Kevin D. McCarty, Yasuhiro Tateishi, F. Peter Guengerich
{"title":"Cytochrome P450BM-3 and P450 11A1 retain Compound I (FeO3+) chemistry with electrophilic substrates poised for Compound 0 (Fe3+O2¯) reactions","authors":"Kevin D. McCarty, Yasuhiro Tateishi, F. Peter Guengerich","doi":"10.1016/j.jbc.2025.110378","DOIUrl":null,"url":null,"abstract":"The catalytic cycle of cytochrome P450 (P450) enzymes involves ferric peroxide anion (Fe<ce:sup loc=\"post\">3+</ce:sup>O<ce:inf loc=\"post\">2</ce:inf>¯, Compound 0) and perferryl oxygen (FeO<ce:sup loc=\"post\">3+</ce:sup>, Compound I) intermediates. Compound I is generally viewed as responsible for most P450-catalyzed oxidations, but Compound 0 has been implicated in the oxidation of some carbonyl compounds, particularly deformylation reactions. We considered the hypothesis that Compound 0 could also attack other electrophilic carbon atoms and accordingly positioned keto groups at preferred hydroxylation sites of substrates for two P450s with well-defined catalytic reactions, bacterial P450<ce:inf loc=\"post\">BM-3</ce:inf> (102A1) and human P450 11A1. The predicted products of Compound I and Compound 0 reactions were analyzed. With the normally preferred ω-1 site blocked, P450<ce:inf loc=\"post\">BM-3</ce:inf> oxidized 12-oxotridecanoic acid (12-oxo C13:0) only at the ω-2 position (yielding 11-hydroxy,12-oxotridecanoic acid), indicative of a Compound I oxidation. P450 11A1 is highly selective for catalyzing the 22<ce:italic>R</ce:italic>-hydroxylation of cholesterol (and some other sterols) in the first step of its overall side-chain cleavage reaction. With 22-oxocholesterol as the substrate, P450 11A1 (slowly) generated only 23-hydroxy,22-oxocholesterol, indicative of Compound I oxidation. Neither P450 generated the products expected from nucleophilic Compound 0 reactions. We conclude that the strategic placement of electrophilic oxo substituents at sites of substrate hydroxylation failed to divert the oxidation mechanism to a Compound 0 pathway with either enzyme. Instead, the Compound I mechanism – blocked at the preferred reaction site – was redirected to neighboring carbons, suggesting that the basis for Compound 0-mediated reactions lies in chemical properties of the enzyme rather than those of the substrate.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"14 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110378","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The catalytic cycle of cytochrome P450 (P450) enzymes involves ferric peroxide anion (Fe3+O2¯, Compound 0) and perferryl oxygen (FeO3+, Compound I) intermediates. Compound I is generally viewed as responsible for most P450-catalyzed oxidations, but Compound 0 has been implicated in the oxidation of some carbonyl compounds, particularly deformylation reactions. We considered the hypothesis that Compound 0 could also attack other electrophilic carbon atoms and accordingly positioned keto groups at preferred hydroxylation sites of substrates for two P450s with well-defined catalytic reactions, bacterial P450BM-3 (102A1) and human P450 11A1. The predicted products of Compound I and Compound 0 reactions were analyzed. With the normally preferred ω-1 site blocked, P450BM-3 oxidized 12-oxotridecanoic acid (12-oxo C13:0) only at the ω-2 position (yielding 11-hydroxy,12-oxotridecanoic acid), indicative of a Compound I oxidation. P450 11A1 is highly selective for catalyzing the 22R-hydroxylation of cholesterol (and some other sterols) in the first step of its overall side-chain cleavage reaction. With 22-oxocholesterol as the substrate, P450 11A1 (slowly) generated only 23-hydroxy,22-oxocholesterol, indicative of Compound I oxidation. Neither P450 generated the products expected from nucleophilic Compound 0 reactions. We conclude that the strategic placement of electrophilic oxo substituents at sites of substrate hydroxylation failed to divert the oxidation mechanism to a Compound 0 pathway with either enzyme. Instead, the Compound I mechanism – blocked at the preferred reaction site – was redirected to neighboring carbons, suggesting that the basis for Compound 0-mediated reactions lies in chemical properties of the enzyme rather than those of the substrate.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.