Machine learning assisted differential evolution for the dynamic resource constrained multi-project scheduling problem with static project schedules

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
T. van der Beek, J.T. van Essen, J. Pruyn, K. Aardal
{"title":"Machine learning assisted differential evolution for the dynamic resource constrained multi-project scheduling problem with static project schedules","authors":"T. van der Beek, J.T. van Essen, J. Pruyn, K. Aardal","doi":"10.1016/j.ejor.2025.05.059","DOIUrl":null,"url":null,"abstract":"In large modular construction projects, such as shipbuilding, multiple similar projects arrive stochastically. At project arrival, a schedule has to be created, in which future modifications are difficult and/or undesirable. Since all projects use the same set of shared resources, current scheduling decisions influence future scheduling possibilities. To model this problem, we introduce the dynamic resource constrained multi-project scheduling problem with static project schedules. To find schedules, both a greedy approach and simulation-based approach with varying scenarios are introduced. Although the simulation-based approach schedules projects proactively, the computing times are long, even for small instances. Therefore, a method is introduced that learns from schedules obtained in the simulation-based method and uses a neural network to estimate the objective function value. It is shown that this method achieves a significant improvement in objective function value over the greedy algorithm, while only requiring a fraction of the computation time of the simulation-based method.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"21 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.05.059","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In large modular construction projects, such as shipbuilding, multiple similar projects arrive stochastically. At project arrival, a schedule has to be created, in which future modifications are difficult and/or undesirable. Since all projects use the same set of shared resources, current scheduling decisions influence future scheduling possibilities. To model this problem, we introduce the dynamic resource constrained multi-project scheduling problem with static project schedules. To find schedules, both a greedy approach and simulation-based approach with varying scenarios are introduced. Although the simulation-based approach schedules projects proactively, the computing times are long, even for small instances. Therefore, a method is introduced that learns from schedules obtained in the simulation-based method and uses a neural network to estimate the objective function value. It is shown that this method achieves a significant improvement in objective function value over the greedy algorithm, while only requiring a fraction of the computation time of the simulation-based method.
基于机器学习的动态资源约束多项目静态调度问题的差分进化研究
在大型模块化建设项目中,如造船,多个类似的项目随机到达。在项目到达时,必须创建一个进度表,在这个进度表中,将来的修改是困难的和/或不受欢迎的。由于所有项目都使用同一组共享资源,因此当前调度决策会影响未来调度的可能性。为了对该问题进行建模,我们引入了静态项目调度的动态资源约束多项目调度问题。为了找到时间表,引入了贪心方法和基于不同场景的模拟方法。尽管基于模拟的方法主动安排项目,但计算时间很长,即使对于小实例也是如此。因此,提出了一种从基于仿真的方法中得到的调度中学习,利用神经网络估计目标函数值的方法。结果表明,该方法在目标函数值上比贪心算法有显著提高,而计算时间仅为基于仿真的方法的一小部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信