Impact dynamic mechanical properties of frozen-soils with different moisture contents following varying numbers of freeze-thaw cycle

IF 4 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bin Li, Zhiwu Zhu, Wurong Jia, Zhengqiang Cheng, Tao Li
{"title":"Impact dynamic mechanical properties of frozen-soils with different moisture contents following varying numbers of freeze-thaw cycle","authors":"Bin Li, Zhiwu Zhu, Wurong Jia, Zhengqiang Cheng, Tao Li","doi":"10.1177/10567895251346021","DOIUrl":null,"url":null,"abstract":"Frozen-soils with different moisture contents (MCs) often experience freeze-thaw cycles (FTCs) owing to fluctuations in seasonal or day-night temperature. The influence of FTC on the impact dynamic mechanical properties of frozen-soils with different MCs was investigated in this study. The impact dynamic compression tests on frozen-soils with different MCs (20%, 25%, and 30%) following varying numbers of FTC (0, 1, 3, 5, and 7) using a split Hopkinson pressure bar apparatus were conducted. The experimental results revealed that the impact dynamic strength of the frozen-soil was related to the number of FTC and MC. A threshold exists for the number of FTC for the frozen-soil. Before reaching this threshold, the impact dynamic strength of the frozen-soil progressively decreased with an increasing number of FTC. Further, the threshold decreased as the MC decreased. Analyzing the energy of frozen-soil during impact process, an expression for the FTC damage in frozen-soils with different MCs was established using the energy density. The reinforcing effect of ice particles on the impact dynamic mechanical properties of frozen-soil was examined, and the elastic constants for the frozen-soils with different MCs were evaluated using micromechanical theory. Furthermore, a finite element numerical model of frozen-soil was developed by integrating cohesive elements into solid elements via Python scripting using the cohesive zone model. The impact dynamic mechanical behavior and crack evolution behavior of frozen-soils with different MCs following varying numbers of FTCs were simulated by considering the mechanisms of FTC degradation and ice particles reinforcement. The validity of the model was confirmed by comparing simulation and experimental results.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"25 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895251346021","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Frozen-soils with different moisture contents (MCs) often experience freeze-thaw cycles (FTCs) owing to fluctuations in seasonal or day-night temperature. The influence of FTC on the impact dynamic mechanical properties of frozen-soils with different MCs was investigated in this study. The impact dynamic compression tests on frozen-soils with different MCs (20%, 25%, and 30%) following varying numbers of FTC (0, 1, 3, 5, and 7) using a split Hopkinson pressure bar apparatus were conducted. The experimental results revealed that the impact dynamic strength of the frozen-soil was related to the number of FTC and MC. A threshold exists for the number of FTC for the frozen-soil. Before reaching this threshold, the impact dynamic strength of the frozen-soil progressively decreased with an increasing number of FTC. Further, the threshold decreased as the MC decreased. Analyzing the energy of frozen-soil during impact process, an expression for the FTC damage in frozen-soils with different MCs was established using the energy density. The reinforcing effect of ice particles on the impact dynamic mechanical properties of frozen-soil was examined, and the elastic constants for the frozen-soils with different MCs were evaluated using micromechanical theory. Furthermore, a finite element numerical model of frozen-soil was developed by integrating cohesive elements into solid elements via Python scripting using the cohesive zone model. The impact dynamic mechanical behavior and crack evolution behavior of frozen-soils with different MCs following varying numbers of FTCs were simulated by considering the mechanisms of FTC degradation and ice particles reinforcement. The validity of the model was confirmed by comparing simulation and experimental results.
不同含水率冻土冻融循环次数对动态力学特性的影响
由于季节或昼夜温度的波动,不同含水率的冻土经常经历冻融循环。研究了FTC对不同MCs冻土冲击动态力学特性的影响。采用分离式霍普金森压杆装置,对不同MCs(20%、25%和30%)的冻土进行了不同FTC次数(0、1、3、5和7)后的冲击动态压缩试验。试验结果表明,冻土的冲击动强度与FTC和MC的数量有关,且对于冻土而言,FTC的数量存在一个阈值。在达到该阈值之前,冻土的冲击动强度随FTC次数的增加而逐渐降低。此外,阈值随着MC的降低而降低。分析了冲击过程中冻土的能量,用能量密度建立了不同MCs下冻土的FTC损伤表达式。研究了冰粒对冻土冲击动力力学性能的增强作用,并利用微力学理论计算了不同粒径冻土的弹性常数。在此基础上,利用黏性区模型,通过Python脚本将黏性单元整合为实体单元,建立了冻土有限元数值模型。考虑冰粒加固和冰粒降解机理,模拟了不同粒径的冻土在不同数量冰粒加固后的冲击动态力学行为和裂缝演化行为。通过仿真与实验结果的对比,验证了模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Damage Mechanics
International Journal of Damage Mechanics 工程技术-材料科学:综合
CiteScore
8.70
自引率
26.20%
发文量
48
审稿时长
5.4 months
期刊介绍: Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics. Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department. The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信