Structural and Functional Analysis of Plant Oil-Body Lipase EgLIP1 From Elaeis guineensis.

IF 2.8 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jia Rong Tey, Siti Fatimah, Maizom Hassan, Anusha Nair, Chyan Leong Ng
{"title":"Structural and Functional Analysis of Plant Oil-Body Lipase EgLIP1 From Elaeis guineensis.","authors":"Jia Rong Tey, Siti Fatimah, Maizom Hassan, Anusha Nair, Chyan Leong Ng","doi":"10.1002/prot.26852","DOIUrl":null,"url":null,"abstract":"<p><p>EgLIP1 is an oil-body lipase (EC 3.1.1.3) overexpressed in the fruit mesocarp of Elaeis guineensis (oil palm). Despite its significant role in fruit ripening and the hydrolysis of of triacylglycerol into free fatty acids (FFA) in oil palm, the molecular structure and functional understanding of EgLIP1 are yet to be fully elucidated. Phylogenetic analysis reveals that EgLIP1 shares homology with several plant oil-body lipases. The 3D structure of EgLIP1 was modeled using AlphaFold 2 with high confidence (pLDDT score of 89.7). Structural comparison with Rhizomucor miehei triacylglycerol lipase (RML) reveals that the regions β1, η1, α1, η2, β2, α2, α3, α4, α15, α16, and β15 represent novel insertions unique to EgLIP1, while the overall fold in other regions of the protein remains highly conserved in comparison to RML. Notably, an insertion of residue \"PF\" was also found in EgLIP1 and its plant orthologs. This insertion is located immediately before the lid domain helix, forming a kink facing toward the active lipase site. Enzyme-membrane surface interaction prediction suggests that α1, α3, α4, α15, and α16 are likely involved in anchoring EgLIP1 at the interface of the phospholipid monolayer of oil bodies. Molecular docking and molecular dynamics (MD) simulation analyses of EgLIP1 with its potential substrate, 1-palmitoylglycerol, demonstrate that the catalytic serine residue S308 and the GX oxyanion hole motif residue T223 can form hydrogen bonds with the carbonyl group of the ligand to initiate a nucleophilic attack on the substrate. Our structure-guided functional studies provide molecular insights into how EgLIP1 associates with oil bodies and catalyzes its potential substrates.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26852","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

EgLIP1 is an oil-body lipase (EC 3.1.1.3) overexpressed in the fruit mesocarp of Elaeis guineensis (oil palm). Despite its significant role in fruit ripening and the hydrolysis of of triacylglycerol into free fatty acids (FFA) in oil palm, the molecular structure and functional understanding of EgLIP1 are yet to be fully elucidated. Phylogenetic analysis reveals that EgLIP1 shares homology with several plant oil-body lipases. The 3D structure of EgLIP1 was modeled using AlphaFold 2 with high confidence (pLDDT score of 89.7). Structural comparison with Rhizomucor miehei triacylglycerol lipase (RML) reveals that the regions β1, η1, α1, η2, β2, α2, α3, α4, α15, α16, and β15 represent novel insertions unique to EgLIP1, while the overall fold in other regions of the protein remains highly conserved in comparison to RML. Notably, an insertion of residue "PF" was also found in EgLIP1 and its plant orthologs. This insertion is located immediately before the lid domain helix, forming a kink facing toward the active lipase site. Enzyme-membrane surface interaction prediction suggests that α1, α3, α4, α15, and α16 are likely involved in anchoring EgLIP1 at the interface of the phospholipid monolayer of oil bodies. Molecular docking and molecular dynamics (MD) simulation analyses of EgLIP1 with its potential substrate, 1-palmitoylglycerol, demonstrate that the catalytic serine residue S308 and the GX oxyanion hole motif residue T223 can form hydrogen bonds with the carbonyl group of the ligand to initiate a nucleophilic attack on the substrate. Our structure-guided functional studies provide molecular insights into how EgLIP1 associates with oil bodies and catalyzes its potential substrates.

豚鼠油脂体脂肪酶EgLIP1的结构与功能分析。
EgLIP1是油棕果实中果皮中过表达的油体脂肪酶(EC 3.1.1.3)。尽管EgLIP1在油棕果实成熟和三酰甘油水解成游离脂肪酸(FFA)过程中发挥着重要作用,但其分子结构和功能尚未完全阐明。系统发育分析表明,EgLIP1与几种植物油体脂肪酶具有同源性。EgLIP1的三维结构采用高置信度的AlphaFold 2建模(pLDDT评分为89.7)。与米黑根茎三酰基甘油脂肪酶(RML)的结构比较表明,β1、η1、α1、η2、β2、α2、α3、α4、α15、α16和β15是EgLIP1特有的新插入区域,而其他区域的整体折叠度与RML相比保持高度保守。值得注意的是,在EgLIP1及其植物同源物中也发现了一个插入残基“PF”。这个插入位于盖子结构域螺旋之前,形成一个面向活性脂肪酶位点的扭结。酶膜表面相互作用预测表明α1、α3、α4、α15和α16可能参与了将EgLIP1锚定在油体磷脂单层界面的作用。EgLIP1与其潜在底物1-棕榈酰甘油的分子对接和分子动力学(MD)模拟分析表明,催化丝氨酸残基S308和GX氧阴离子空穴基序残基T223可以与配体的羰基形成氢键,从而引发对底物的亲核攻击。我们的结构引导功能研究为EgLIP1如何与油体结合并催化其潜在底物提供了分子见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proteins-Structure Function and Bioinformatics
Proteins-Structure Function and Bioinformatics 生物-生化与分子生物学
CiteScore
5.90
自引率
3.40%
发文量
172
审稿时长
3 months
期刊介绍: PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信