Brett J G Estes, Nisha Gandhi, Jessica R Von Stetina, Dev Paudel, Angela X Nan, Parth Amin, Joshua Rose, Shuai Wu, Kangni Zheng, Yijun Zhang, Jesse C Cochrane, Jonathan D Finn, Jenny Xie
{"title":"Development of circular AAV cargos for targeted seamless insertion with large serine integrases.","authors":"Brett J G Estes, Nisha Gandhi, Jessica R Von Stetina, Dev Paudel, Angela X Nan, Parth Amin, Joshua Rose, Shuai Wu, Kangni Zheng, Yijun Zhang, Jesse C Cochrane, Jonathan D Finn, Jenny Xie","doi":"10.1016/j.omtm.2025.101490","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in gene insertion have shifted from DNA-repair-dependent mechanisms to more precise approaches, enhancing safety and predictability for editing outcomes. Integrase-mediated programmable genomic integration (I-PGI) utilizes a DNA cargo to insert transgenes in a targeted, unidirectional manner. <i>In vivo</i>, where nuclear delivery of DNA is challenging, adeno-associated virus (AAV) can act as the cargo vector. Although I-PGI does not require DNA double-strand breaks (DSBs) for activity, linear cargo, like AAV, stimulates DNA end-joining activity after integration. To mitigate potential risks from DSBs, we developed two circular AAV cargos capable of seamless gene insertion in non-dividing cells. We first harnessed the orthogonal property of large serine integrases to produce circle-AAV (cAAV) from linear viral genomes in cells. cAAV demonstrated seamless cargo integration in primary human hepatocytes (PHHs) and robust DSB-free insertion structures <i>in vivo</i>. We then investigated the delivery of a packaged circular AAV cargo (AAV.AD), which eliminates the need for enzymatic manipulation in the cell. AAV.AD exhibited functional seamless gene insertion in PHHs and showed cargo efficacy <i>in vivo</i>. Together, these findings provide evidence of DSB-free programmable genomic integration using integrase and AAV cargo, addressing a previously unrecognized challenge in the field.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"33 2","pages":"101490"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12166831/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2025.101490","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/12 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in gene insertion have shifted from DNA-repair-dependent mechanisms to more precise approaches, enhancing safety and predictability for editing outcomes. Integrase-mediated programmable genomic integration (I-PGI) utilizes a DNA cargo to insert transgenes in a targeted, unidirectional manner. In vivo, where nuclear delivery of DNA is challenging, adeno-associated virus (AAV) can act as the cargo vector. Although I-PGI does not require DNA double-strand breaks (DSBs) for activity, linear cargo, like AAV, stimulates DNA end-joining activity after integration. To mitigate potential risks from DSBs, we developed two circular AAV cargos capable of seamless gene insertion in non-dividing cells. We first harnessed the orthogonal property of large serine integrases to produce circle-AAV (cAAV) from linear viral genomes in cells. cAAV demonstrated seamless cargo integration in primary human hepatocytes (PHHs) and robust DSB-free insertion structures in vivo. We then investigated the delivery of a packaged circular AAV cargo (AAV.AD), which eliminates the need for enzymatic manipulation in the cell. AAV.AD exhibited functional seamless gene insertion in PHHs and showed cargo efficacy in vivo. Together, these findings provide evidence of DSB-free programmable genomic integration using integrase and AAV cargo, addressing a previously unrecognized challenge in the field.
期刊介绍:
The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella.
Topics of particular interest within the journal''s scope include:
Gene vector engineering and production,
Methods for targeted genome editing and engineering,
Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells,
Methods for gene and cell vector delivery,
Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine,
Analysis of gene and cell vector biodistribution and tracking,
Pharmacology/toxicology studies of new and next-generation vectors,
Methods for cell isolation, engineering, culture, expansion, and transplantation,
Cell processing, storage, and banking for therapeutic application,
Preclinical and QC/QA assay development,
Translational and clinical scale-up and Good Manufacturing procedures and process development,
Clinical protocol development,
Computational and bioinformatic methods for analysis, modeling, or visualization of biological data,
Negotiating the regulatory approval process and obtaining such approval for clinical trials.