{"title":"Robust Heteroclinic Cycles in Pluridimensions.","authors":"Sofia B S D Castro, Alastair M Rucklidge","doi":"10.1007/s00332-025-10175-2","DOIUrl":null,"url":null,"abstract":"<p><p>Heteroclinic cycles are sequences of equilibria along with trajectories that connect them in a cyclic manner. We investigate a class of robust heteroclinic cycles that do not satisfy the usual condition that all connections between equilibria lie in flow-invariant subspaces of equal dimension. We refer to these as robust heteroclinic cycles in pluridimensions. The stability of these cycles cannot be expressed in terms of ratios of contracting and expanding eigenvalues in the usual way because, when the subspace dimensions increase, the equilibria fail to have contracting eigenvalues. We develop the stability theory for robust heteroclinic cycles in pluridimensions, allowing for the absence of contracting eigenvalues. We present four new examples, each with four equilibria and living in four dimensions, that illustrate the stability calculations. Potential applications include modelling the dynamics of evolving populations when there are transitions between equilibria corresponding to mixed populations with different numbers of species.</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"35 4","pages":"80"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12159117/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-025-10175-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Heteroclinic cycles are sequences of equilibria along with trajectories that connect them in a cyclic manner. We investigate a class of robust heteroclinic cycles that do not satisfy the usual condition that all connections between equilibria lie in flow-invariant subspaces of equal dimension. We refer to these as robust heteroclinic cycles in pluridimensions. The stability of these cycles cannot be expressed in terms of ratios of contracting and expanding eigenvalues in the usual way because, when the subspace dimensions increase, the equilibria fail to have contracting eigenvalues. We develop the stability theory for robust heteroclinic cycles in pluridimensions, allowing for the absence of contracting eigenvalues. We present four new examples, each with four equilibria and living in four dimensions, that illustrate the stability calculations. Potential applications include modelling the dynamics of evolving populations when there are transitions between equilibria corresponding to mixed populations with different numbers of species.
期刊介绍:
The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be.
All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.