Christoph Sadée, Stefano Testa, Thomas Barba, Katherine Hartmann, Maximilian Schuessler, Alexander Thieme, George M Church, Ifeoma Okoye, Tina Hernandez-Boussard, Leroy Hood, Ilya Shmulevich, Ellen Kuhl, Olivier Gevaert
{"title":"Medical digital twins: enabling precision medicine and medical artificial intelligence.","authors":"Christoph Sadée, Stefano Testa, Thomas Barba, Katherine Hartmann, Maximilian Schuessler, Alexander Thieme, George M Church, Ifeoma Okoye, Tina Hernandez-Boussard, Leroy Hood, Ilya Shmulevich, Ellen Kuhl, Olivier Gevaert","doi":"10.1016/j.landig.2025.02.004","DOIUrl":null,"url":null,"abstract":"<p><p>The notion of medical digital twins is gaining popularity both within the scientific community and among the general public; however, much of the recent enthusiasm has occurred in the absence of a consensus on their fundamental make-up. Digital twins originate in the field of engineering, in which a constantly updating virtual copy enables analysis, simulation, and prediction of a real-world object or process. In this Health Policy paper, we evaluate this concept in the context of medicine and outline five key components of the medical digital twin: the patient, data connection, patient-in-silico, interface, and twin synchronisation. We consider how various enabling technologies in multimodal data, artificial intelligence, and mechanistic modelling will pave the way for clinical adoption and provide examples pertaining to oncology and diabetes. We highlight the role of data fusion and the potential of merging artificial intelligence and mechanistic modelling to address the limitations of either the AI or the mechanistic modelling approach used independently. In particular, we highlight how the digital twin concept can support the performance of large language models applied in medicine and its potential to address health-care challenges. We believe that this Health Policy paper will help to guide scientists, clinicians, and policy makers in creating medical digital twins in the future and translating this promising new paradigm from theory into clinical practice.</p>","PeriodicalId":48534,"journal":{"name":"Lancet Digital Health","volume":" ","pages":"100864"},"PeriodicalIF":23.8000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Digital Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.landig.2025.02.004","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The notion of medical digital twins is gaining popularity both within the scientific community and among the general public; however, much of the recent enthusiasm has occurred in the absence of a consensus on their fundamental make-up. Digital twins originate in the field of engineering, in which a constantly updating virtual copy enables analysis, simulation, and prediction of a real-world object or process. In this Health Policy paper, we evaluate this concept in the context of medicine and outline five key components of the medical digital twin: the patient, data connection, patient-in-silico, interface, and twin synchronisation. We consider how various enabling technologies in multimodal data, artificial intelligence, and mechanistic modelling will pave the way for clinical adoption and provide examples pertaining to oncology and diabetes. We highlight the role of data fusion and the potential of merging artificial intelligence and mechanistic modelling to address the limitations of either the AI or the mechanistic modelling approach used independently. In particular, we highlight how the digital twin concept can support the performance of large language models applied in medicine and its potential to address health-care challenges. We believe that this Health Policy paper will help to guide scientists, clinicians, and policy makers in creating medical digital twins in the future and translating this promising new paradigm from theory into clinical practice.
期刊介绍:
The Lancet Digital Health publishes important, innovative, and practice-changing research on any topic connected with digital technology in clinical medicine, public health, and global health.
The journal’s open access content crosses subject boundaries, building bridges between health professionals and researchers.By bringing together the most important advances in this multidisciplinary field,The Lancet Digital Health is the most prominent publishing venue in digital health.
We publish a range of content types including Articles,Review, Comment, and Correspondence, contributing to promoting digital technologies in health practice worldwide.