Metal-mediated peptide processing. How copper and iron catalyze diverse peptide modifications such as amidation and crosslinking

IF 3.1 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ninian J. Blackburn
{"title":"Metal-mediated peptide processing. How copper and iron catalyze diverse peptide modifications such as amidation and crosslinking","authors":"Ninian J. Blackburn","doi":"10.1039/D5CB00085H","DOIUrl":null,"url":null,"abstract":"<p >Peptide processing is an important post-translational function that converts newly synthesized pro-peptides into their biologically active mature forms. In this review we discuss two such processes, peptide amidation and ribosomally synthesized post-translationally modified peptide (RiPP) synthesis. The first step in peptide amidation is catalyzed by copper, utilizing a single enzyme peptidylglycine monooxygenase (PHM), while RiPP chemistry can utilize Fe-containing radical SAM enzymes and in a more recent discovery Cu-containing burpitide cyclases. For PHM we describe the canonical mechanism built on three decades of structural, spectroscopic and computational work that posits mononuclear reactivity coupled to long range electron transfer. We discuss this alongside new experimental evidence that suggests instead an open-to-closed conformationally gated mechanism where a binuclear copper entity is the reactive species. Next we describe new insights into RiPP chemistry of thioether formation formed <em>via</em> cysteine to peptidyl-C crosslinking in the radical SAM enzymes PapB and Tte1186. Here Se edge XAS has documented selenocysteine to Fe binding at an auxiliary FeS cluster as an important step in S/Se to peptidyl-C coupling. Finally we examine analogous radical-induced peptide crosslinking in a new class of peptide cyclases termed burpitide cyclases (BpCs) some of which exhibit a striking similarity to PHM, yet show catalytic chemistry leading to a different product profile. These comparisons emphasize how nature leverages very specific properties of metal ions, and their ability to underpin catalysis <em>via</em> radical processes to bring about a variety of important biochemical and biological outcomes.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" 7","pages":" 1048-1067"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12164859/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cb/d5cb00085h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Peptide processing is an important post-translational function that converts newly synthesized pro-peptides into their biologically active mature forms. In this review we discuss two such processes, peptide amidation and ribosomally synthesized post-translationally modified peptide (RiPP) synthesis. The first step in peptide amidation is catalyzed by copper, utilizing a single enzyme peptidylglycine monooxygenase (PHM), while RiPP chemistry can utilize Fe-containing radical SAM enzymes and in a more recent discovery Cu-containing burpitide cyclases. For PHM we describe the canonical mechanism built on three decades of structural, spectroscopic and computational work that posits mononuclear reactivity coupled to long range electron transfer. We discuss this alongside new experimental evidence that suggests instead an open-to-closed conformationally gated mechanism where a binuclear copper entity is the reactive species. Next we describe new insights into RiPP chemistry of thioether formation formed via cysteine to peptidyl-C crosslinking in the radical SAM enzymes PapB and Tte1186. Here Se edge XAS has documented selenocysteine to Fe binding at an auxiliary FeS cluster as an important step in S/Se to peptidyl-C coupling. Finally we examine analogous radical-induced peptide crosslinking in a new class of peptide cyclases termed burpitide cyclases (BpCs) some of which exhibit a striking similarity to PHM, yet show catalytic chemistry leading to a different product profile. These comparisons emphasize how nature leverages very specific properties of metal ions, and their ability to underpin catalysis via radical processes to bring about a variety of important biochemical and biological outcomes.

Abstract Image

金属介导的肽加工。铜和铁如何催化多种肽修饰,如酰胺化和交联。
肽加工是一个重要的翻译后功能,将新合成的前肽转化为具有生物活性的成熟形式。在这篇综述中,我们讨论了两个这样的过程,肽酰胺化和核糖体合成翻译后修饰肽(RiPP)合成。肽酰胺化的第一步是由铜催化,利用单酶肽酰甘氨酸单加氧酶(PHM),而RiPP化学可以利用含铁的自由基SAM酶和最近发现的含铜的脂肽环化酶。对于PHM,我们描述了建立在三十年的结构,光谱和计算工作基础上的规范机制,该机制假定单核反应性与远程电子转移相耦合。我们讨论这与新的实验证据表明,相反,一个开放到封闭的构象门控机制,其中双核铜实体是活性物质。接下来,我们描述了在自由基SAM酶PapB和Tte1186中通过半胱氨酸到肽基c交联形成硫醚的RiPP化学的新见解。在这里,Se边缘XAS记录了硒代半胱氨酸与Fe在辅助FeS簇上的结合,这是S/Se与肽基- c偶联的重要步骤。最后,我们研究了一类新的肽环化酶,称为肽环化酶(BpCs)中类似的自由基诱导的肽交联,其中一些与PHM具有惊人的相似性,但表现出催化化学反应,导致不同的产物结构。这些比较强调了大自然如何利用金属离子的特殊性质,以及它们通过自由基过程支持催化的能力,从而带来各种重要的生化和生物学结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
128
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信