{"title":"A Meta-Analysis of the Diagnostic Test Accuracy of Artificial Intelligence for Predicting Emergency Department Revisits.","authors":"Kuang-Ming Kuo, Wen-Shiann Wu, Chao Sheng Chang","doi":"10.1007/s10916-025-02210-2","DOIUrl":null,"url":null,"abstract":"<p><p>The revisit of the emergency department (ED) is a key indicator of emergency care quality. Various strategies have been proposed to reduce ED revisits, including the use of artificial intelligence (AI) models for prediction. However, AI model performance varies significantly, and its true predictive capability remains unclear. To address these gaps, the primary purpose of this study is to evaluate the performance of AI in predicting ED revisits through a meta-analysis. Specifically, this study aims to (1) Quantitatively assess the predictive performance of AI in ED revisit prediction and (2) Identify covariates contributing to between-study heterogeneity. A systematic search was conducted on December 31, 2024, across multiple electronic databases, including Scopus, SpringerLink, ScienceDirect, PubMed, Wiley, Sage, and Google Scholar, to identify relevant studies meeting the following criteria: (1) Utilized machine learning, deep learning, or artificial intelligence techniques to predict patient return visits to the ED, (2) Written in English, and (3) Peer-reviewed. Diagnostic accuracy was assessed using pooled sensitivity, specificity, and area under receiver operating characteristic curve (AUROC), while subgroup analysis explored factors contributing to heterogeneity. This meta-analysis included 20 articles, comprising 27 AI models. The summary estimates for ED revisit prediction were as follows: (1) Sensitivity: 0.56 (95% Confidence Interval [CI]: 0.44-0.67), (2) Specificity: 0.92 (95% CI: 0.86-0.96), and (3) AUROC: 0.81 (95% CI: 0.71-0.88). Subgroup analysis identified nationality, missing value-handling strategies, and specific disease samples as potential contributors to between-study heterogeneity. Future research should focus on improving missing value processing and using specific disease samples to enhance model reliability.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"49 1","pages":"81"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-025-02210-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
The revisit of the emergency department (ED) is a key indicator of emergency care quality. Various strategies have been proposed to reduce ED revisits, including the use of artificial intelligence (AI) models for prediction. However, AI model performance varies significantly, and its true predictive capability remains unclear. To address these gaps, the primary purpose of this study is to evaluate the performance of AI in predicting ED revisits through a meta-analysis. Specifically, this study aims to (1) Quantitatively assess the predictive performance of AI in ED revisit prediction and (2) Identify covariates contributing to between-study heterogeneity. A systematic search was conducted on December 31, 2024, across multiple electronic databases, including Scopus, SpringerLink, ScienceDirect, PubMed, Wiley, Sage, and Google Scholar, to identify relevant studies meeting the following criteria: (1) Utilized machine learning, deep learning, or artificial intelligence techniques to predict patient return visits to the ED, (2) Written in English, and (3) Peer-reviewed. Diagnostic accuracy was assessed using pooled sensitivity, specificity, and area under receiver operating characteristic curve (AUROC), while subgroup analysis explored factors contributing to heterogeneity. This meta-analysis included 20 articles, comprising 27 AI models. The summary estimates for ED revisit prediction were as follows: (1) Sensitivity: 0.56 (95% Confidence Interval [CI]: 0.44-0.67), (2) Specificity: 0.92 (95% CI: 0.86-0.96), and (3) AUROC: 0.81 (95% CI: 0.71-0.88). Subgroup analysis identified nationality, missing value-handling strategies, and specific disease samples as potential contributors to between-study heterogeneity. Future research should focus on improving missing value processing and using specific disease samples to enhance model reliability.
期刊介绍:
Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.