{"title":"Effects of salinity stress on morphological structure, physiology, and mRNA expression in different wheat (<i>Triticum aestivum</i> L.) cultivars.","authors":"Xiaohui Sun, Yuliu Tan, Yumei Zhang, Weiwei Guo, Ximei Li, Nataliia Golub, Lili Zhang, Huifang Wang","doi":"10.3389/fgene.2025.1535610","DOIUrl":null,"url":null,"abstract":"<p><p>Salinity is a major abiotic stress that threatens crop yield and food supply in saline soil areas. Wheat (<i>Triticum aestivum</i> L.) is the most important cereal crop in arid and semiarid land areas, which are often adversely affected by soil salinity. Hence, creating salt tolerance wheat is of great value for utilizing saline soils. In this study, two wheat cultivars QingMai 6 (QM6, salt-tolerant) and Chinese Spring (CS, salt-sensitive) were subjected to salinity stress. Morphological analysis showed that the seedlings of QM6 grew better than CS under salt stress conditions, especially in roots. Electron microscopic studies revealed that salinity stress caused significantly more root hairs and less effect on normal chloroplast structure in QM6 than these in CS. Moreover, QM6 showed a higher photosynthetic activity under salt stress conditions compared to CS. Further investigation showed the salt-tolerant phenotypes of QM6 were accompanied by decreases of reactive oxygen species (ROS) content, and lower antioxidant enzyme activities after salt treatment compared with CS. Additionally, qRT-PCR analyses revealed that the expression level of ROS-scavenging genes (<i>TaSOD6</i>, <i>TaCAT1/5/6</i>, <i>TaPOD7, TaP5CS1</i>) and stress-responsive genes (<i>TaDREB3</i>, <i>TaWRKY19</i>, <i>TaERF5a, TaLTP1, TaTIP2</i>) displayed more transcripts in QM6 than CS. These results provide insight into the mechanisms underlying salt tolerance in wheat, and could be potentially used to develop salt tolerant wheat varieties.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1535610"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162971/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1535610","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Salinity is a major abiotic stress that threatens crop yield and food supply in saline soil areas. Wheat (Triticum aestivum L.) is the most important cereal crop in arid and semiarid land areas, which are often adversely affected by soil salinity. Hence, creating salt tolerance wheat is of great value for utilizing saline soils. In this study, two wheat cultivars QingMai 6 (QM6, salt-tolerant) and Chinese Spring (CS, salt-sensitive) were subjected to salinity stress. Morphological analysis showed that the seedlings of QM6 grew better than CS under salt stress conditions, especially in roots. Electron microscopic studies revealed that salinity stress caused significantly more root hairs and less effect on normal chloroplast structure in QM6 than these in CS. Moreover, QM6 showed a higher photosynthetic activity under salt stress conditions compared to CS. Further investigation showed the salt-tolerant phenotypes of QM6 were accompanied by decreases of reactive oxygen species (ROS) content, and lower antioxidant enzyme activities after salt treatment compared with CS. Additionally, qRT-PCR analyses revealed that the expression level of ROS-scavenging genes (TaSOD6, TaCAT1/5/6, TaPOD7, TaP5CS1) and stress-responsive genes (TaDREB3, TaWRKY19, TaERF5a, TaLTP1, TaTIP2) displayed more transcripts in QM6 than CS. These results provide insight into the mechanisms underlying salt tolerance in wheat, and could be potentially used to develop salt tolerant wheat varieties.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.