{"title":"Effect of juvenile social isolation on excitability of prefrontal pyramidal cells with different subcortical axonal projections.","authors":"Yosuke Nishihata, Hiroki Yoshino, Yoichi Ogawa, Taketoshi Sugimura, Kazuya Okamura, Sohei Kimoto, Kazuhiko Yamamuro, Manabu Makinodan, Yasuhiko Saito, Toshifumi Kishimoto","doi":"10.3389/fncel.2025.1549352","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Social experience during development is crucial for the functional maturation of the prefrontal cortex (PFC). Juvenile social isolation (JSI) causes severe PFC dysfunction. JSI reduces intrinsic excitability and excitatory synaptic inputs for a subtype of layer-5 (L5) pyramidal cells showing prominent h-current (PH cells) in the medial PFC. PH cells do not have commissural or associational cortical output; instead, they project into subcortical areas. However, which subcortical area is the projection target of L5 pyramidal cells affected by JSI remains unascertained.</p><p><strong>Methods: </strong>Using retrograde neuronal tracing, we identified L5 pyramidal cells having three different projection targets: the mediodorsal thalamus, striatum, or pontine nuclei. We elucidated differences in functional properties among the three subclasses of L5 pyramidal cells and examined how JSI affects the intrinsic membrane properties and excitatory inputs for each class of L5 pyramidal cells.</p><p><strong>Results: </strong>Pyramidal cells projecting to the pontine nuclei had more excitatory synaptic inputs and more distinguishing intrinsic properties than pyramidal cells projecting to the mediodorsal thalamus and striatum. JSI increased the firing responsiveness of pyramidal cell projecting to mediodorsal thalamus and reduced excitatory synaptic inputs only onto pyramidal cells projecting to the pontine nuclei.</p><p><strong>Conclusion: </strong>JSI affects the development of L5 pyramidal cells based on their projection target.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"19 ","pages":"1549352"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163027/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncel.2025.1549352","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Social experience during development is crucial for the functional maturation of the prefrontal cortex (PFC). Juvenile social isolation (JSI) causes severe PFC dysfunction. JSI reduces intrinsic excitability and excitatory synaptic inputs for a subtype of layer-5 (L5) pyramidal cells showing prominent h-current (PH cells) in the medial PFC. PH cells do not have commissural or associational cortical output; instead, they project into subcortical areas. However, which subcortical area is the projection target of L5 pyramidal cells affected by JSI remains unascertained.
Methods: Using retrograde neuronal tracing, we identified L5 pyramidal cells having three different projection targets: the mediodorsal thalamus, striatum, or pontine nuclei. We elucidated differences in functional properties among the three subclasses of L5 pyramidal cells and examined how JSI affects the intrinsic membrane properties and excitatory inputs for each class of L5 pyramidal cells.
Results: Pyramidal cells projecting to the pontine nuclei had more excitatory synaptic inputs and more distinguishing intrinsic properties than pyramidal cells projecting to the mediodorsal thalamus and striatum. JSI increased the firing responsiveness of pyramidal cell projecting to mediodorsal thalamus and reduced excitatory synaptic inputs only onto pyramidal cells projecting to the pontine nuclei.
Conclusion: JSI affects the development of L5 pyramidal cells based on their projection target.
期刊介绍:
Frontiers in Cellular Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the cellular mechanisms underlying cell function in the nervous system across all species. Specialty Chief Editors Egidio D‘Angelo at the University of Pavia and Christian Hansel at the University of Chicago are supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.