VirulentHunter: deep learning-based virulence factor predictor illuminates pathogenicity in diverse microbial contexts.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Chen Chen, Yong Xu, Jian Ouyang, Xiangyi Xiong, Paweł P Łabaj, Agnieszka Chmielarczyk, Anna Różańska, Hao Zhang, Keyang Liu, Tieliu Shi, Jun Wu
{"title":"VirulentHunter: deep learning-based virulence factor predictor illuminates pathogenicity in diverse microbial contexts.","authors":"Chen Chen, Yong Xu, Jian Ouyang, Xiangyi Xiong, Paweł P Łabaj, Agnieszka Chmielarczyk, Anna Różańska, Hao Zhang, Keyang Liu, Tieliu Shi, Jun Wu","doi":"10.1093/bib/bbaf271","DOIUrl":null,"url":null,"abstract":"<p><p>Virulence factors (VFs) are critical determinants of bacterial pathogenicity, but current homology-based identification methods often miss novel or divergent VFs, and many machine learning approaches neglect functional classification. Here, we present VirulentHunter, a novel deep learning framework that enable simultaneous VF identification and classification directly from protein sequences by leveraging the crucial step of fine-tuning pretrained protein language model. We curate a comprehensive VF database by integrating diverse public resources and expanding VF category annotations. Our benchmarking results demonstrate that VirulentHunter outperforms existing methods, particularly in identifying VFs lacking detectable homologs. Additionally, strain-level analysis using VirulentHunter highlights distinct pathogenicity profiles between Mycobacterium tuberculosis and Mycobacterium avium, revealing enrichment in VFs related to adherence, effector delivery systems, and immune modulation in M. tuberculosis, compared to biofilm formation and motility in M. avium. Furthermore, metagenomic profiling of gut microbiota from inflammatory bowel disease patient reveals a depletion of VFs associated with immune homeostasis. These results underscore the versatility of VirulentHunter as a powerful tool for VF analysis across diverse applications. To facilitate broader accessibility, we provide a freely accessible web service for VF prediction (http://www.unimd.org/VirulentHunter), accommodating protein sequences, genomes, and metagenomic data.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12167765/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf271","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Virulence factors (VFs) are critical determinants of bacterial pathogenicity, but current homology-based identification methods often miss novel or divergent VFs, and many machine learning approaches neglect functional classification. Here, we present VirulentHunter, a novel deep learning framework that enable simultaneous VF identification and classification directly from protein sequences by leveraging the crucial step of fine-tuning pretrained protein language model. We curate a comprehensive VF database by integrating diverse public resources and expanding VF category annotations. Our benchmarking results demonstrate that VirulentHunter outperforms existing methods, particularly in identifying VFs lacking detectable homologs. Additionally, strain-level analysis using VirulentHunter highlights distinct pathogenicity profiles between Mycobacterium tuberculosis and Mycobacterium avium, revealing enrichment in VFs related to adherence, effector delivery systems, and immune modulation in M. tuberculosis, compared to biofilm formation and motility in M. avium. Furthermore, metagenomic profiling of gut microbiota from inflammatory bowel disease patient reveals a depletion of VFs associated with immune homeostasis. These results underscore the versatility of VirulentHunter as a powerful tool for VF analysis across diverse applications. To facilitate broader accessibility, we provide a freely accessible web service for VF prediction (http://www.unimd.org/VirulentHunter), accommodating protein sequences, genomes, and metagenomic data.

VirulentHunter:基于深度学习的毒力因子预测器阐明了不同微生物环境下的致病性。
毒力因子(VFs)是细菌致病性的关键决定因素,但目前基于同源性的鉴定方法经常错过新的或不同的VFs,许多机器学习方法忽略了功能分类。在这里,我们提出了VirulentHunter,这是一个新的深度学习框架,通过利用微调预训练蛋白质语言模型的关键步骤,可以直接从蛋白质序列中同时识别和分类VF。我们通过整合各种公共资源和扩展VF类别注释,策划了一个全面的VF数据库。我们的基准测试结果表明,VirulentHunter优于现有的方法,特别是在识别缺乏可检测同源物的VFs方面。此外,使用VirulentHunter进行的菌株水平分析突出了结核分枝杆菌和鸟分枝杆菌之间不同的致病性特征,揭示了与鸟分枝杆菌的生物膜形成和运动相比,结核分枝杆菌中与粘附、效应传递系统和免疫调节相关的VFs的富集。此外,炎症性肠病患者肠道微生物群的宏基因组分析显示,VFs的消耗与免疫稳态有关。这些结果强调了VirulentHunter作为跨不同应用程序进行VF分析的强大工具的多功能性。为了方便更广泛的访问,我们提供了一个免费访问的VF预测web服务(http://www.unimd.org/VirulentHunter),包含蛋白质序列,基因组和宏基因组数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信