Impact of bioreactor process parameters and yeast biomass on Raman spectra.

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Maarten Klaverdijk, Mehrab Nemati, Marcel Ottens, Marieke E Klijn
{"title":"Impact of bioreactor process parameters and yeast biomass on Raman spectra.","authors":"Maarten Klaverdijk, Mehrab Nemati, Marcel Ottens, Marieke E Klijn","doi":"10.1002/btpr.70050","DOIUrl":null,"url":null,"abstract":"<p><p>In-line Raman spectroscopy combined with chemometric modeling is a valuable process analytical technology (PAT) providing real-time quantitative information on cell culture compounds. Considering that compound quantification through chemometric models depends on pre-processing to maintain consistent changes in intensity at certain wavenumbers, all causes of signal distortion should be well understood to prevent quantification inaccuracies. This work investigated spectral distortion caused by the changing bioreactor parameters temperature, bubble quantity, and medium viscosity. In addition, the isolated spectral contribution of Saccharomyces cerevisiae cells in suspension was also determined. A temperature range from 20 to 40°C resulted in peak shifts up to 0.8 cm<sup>-1</sup> to lower wavenumbers, bubbles generated under standard bioreactor operation conditions led to signal attenuation of up to 7.93% reduction in peak intensity, and changes in liquid viscosity resulted in complex peak shift behavior. Isolated biomass concentrations reaching 5 g/L caused up to 44.6% reduction in distinct peak intensity, which was similar to spectra from batch process fermentations. Correcting for the attenuation revealed spectral features of biomass associated with proteins and lipids in the 1000-1500 cm<sup>-1</sup> region. However, the spectral contribution of yeast biomass is dominated by signal extinction, which attenuates Raman spectra in a non-linear manner as biomass accumulates. The obtained knowledge on different sources of spectral distortion aids in the development of robust pre-processing and modeling strategies to obtain chemometric models applicable across experimental setups.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e70050"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.70050","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In-line Raman spectroscopy combined with chemometric modeling is a valuable process analytical technology (PAT) providing real-time quantitative information on cell culture compounds. Considering that compound quantification through chemometric models depends on pre-processing to maintain consistent changes in intensity at certain wavenumbers, all causes of signal distortion should be well understood to prevent quantification inaccuracies. This work investigated spectral distortion caused by the changing bioreactor parameters temperature, bubble quantity, and medium viscosity. In addition, the isolated spectral contribution of Saccharomyces cerevisiae cells in suspension was also determined. A temperature range from 20 to 40°C resulted in peak shifts up to 0.8 cm-1 to lower wavenumbers, bubbles generated under standard bioreactor operation conditions led to signal attenuation of up to 7.93% reduction in peak intensity, and changes in liquid viscosity resulted in complex peak shift behavior. Isolated biomass concentrations reaching 5 g/L caused up to 44.6% reduction in distinct peak intensity, which was similar to spectra from batch process fermentations. Correcting for the attenuation revealed spectral features of biomass associated with proteins and lipids in the 1000-1500 cm-1 region. However, the spectral contribution of yeast biomass is dominated by signal extinction, which attenuates Raman spectra in a non-linear manner as biomass accumulates. The obtained knowledge on different sources of spectral distortion aids in the development of robust pre-processing and modeling strategies to obtain chemometric models applicable across experimental setups.

生物反应器工艺参数和酵母生物量对拉曼光谱的影响。
在线拉曼光谱与化学计量学建模相结合是一种有价值的过程分析技术(PAT),可以提供细胞培养化合物的实时定量信息。考虑到通过化学计量模型进行的复合量化依赖于预处理,以在某些波数下保持强度的一致变化,应充分了解信号失真的所有原因,以防止量化不准确。研究了生物反应器参数、温度、气泡量和介质粘度变化引起的光谱畸变。此外,还测定了悬浮液中酿酒酵母细胞的分离光谱贡献。在20 ~ 40℃的温度范围内,峰值位移可达0.8 cm-1至较低的波数,在标准生物反应器操作条件下产生的气泡导致信号衰减,峰值强度降低高达7.93%,液体粘度的变化导致复杂的峰值位移行为。分离生物量浓度达到5 g/L时,不同峰强度降低44.6%,这与间歇发酵的光谱相似。对衰减进行校正,揭示了在1000-1500 cm-1区域与蛋白质和脂质相关的生物量的光谱特征。然而,酵母生物量的光谱贡献以信号消光为主,随着生物量的积累,信号消光以非线性方式衰减拉曼光谱。所获得的关于光谱畸变不同来源的知识有助于开发强大的预处理和建模策略,以获得适用于实验设置的化学计量模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology Progress
Biotechnology Progress 工程技术-生物工程与应用微生物
CiteScore
6.50
自引率
3.40%
发文量
83
审稿时长
4 months
期刊介绍: Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries. Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信