{"title":"Kinetics Dependence of RAFT Emulsion Polymerization of 2-Ethylhexyl Acrylate on Initiator Concentrations","authors":"Huanxin Ni, Yingwu Luo","doi":"10.1002/mren.202400051","DOIUrl":null,"url":null,"abstract":"<p>Reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization with a well-designed amphiphilic macroRAFT agent as a surfactant has been well-developed as a powerful tool to synthesize high molecular weight multiblock copolymers. However, the polymerization kinetics research has been mostly limited to styrene polymerization. It has been reported that the dependence of the particle number on initiator concentration is described by <i>N<sub>p</sub></i>∝[I]<sup>−0.4</sup> in amphiphilic macroRAFT-mediated emulsion polymerization of styrene, which surprisingly deviates from the classical Smith–Eward equation. In the current study, the dependence of polymerization kinetics on the initiator concentration in the RAFT emulsion polymerization of 2-ethylhexyl acrylate (EHA) is investigated. It is revealed that the dependence of the particle number on initiator concentration (<i>N<sub>p</sub></i>∝[I]<sup>−0.29</sup>) is similar to that of styrene but the exponent is less. Additionally, compared to styrene polymerization, the inhibition period in EHA polymerization is significantly extended due to the much lower water-solubility of EHA.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"19 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mren.202400051","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization with a well-designed amphiphilic macroRAFT agent as a surfactant has been well-developed as a powerful tool to synthesize high molecular weight multiblock copolymers. However, the polymerization kinetics research has been mostly limited to styrene polymerization. It has been reported that the dependence of the particle number on initiator concentration is described by Np∝[I]−0.4 in amphiphilic macroRAFT-mediated emulsion polymerization of styrene, which surprisingly deviates from the classical Smith–Eward equation. In the current study, the dependence of polymerization kinetics on the initiator concentration in the RAFT emulsion polymerization of 2-ethylhexyl acrylate (EHA) is investigated. It is revealed that the dependence of the particle number on initiator concentration (Np∝[I]−0.29) is similar to that of styrene but the exponent is less. Additionally, compared to styrene polymerization, the inhibition period in EHA polymerization is significantly extended due to the much lower water-solubility of EHA.
期刊介绍:
Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.