Bearings-Only Target Motion Analysis via Deep Reinforcement Learning

IF 19.2 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Chengyi Zhou;Meiqin Liu;Senlin Zhang;Ronghao Zheng;Shanling Dong
{"title":"Bearings-Only Target Motion Analysis via Deep Reinforcement Learning","authors":"Chengyi Zhou;Meiqin Liu;Senlin Zhang;Ronghao Zheng;Shanling Dong","doi":"10.1109/JAS.2024.124449","DOIUrl":null,"url":null,"abstract":"Dear Editor, This letter introduces a novel approach to address the bearings-only target motion analysis (BO-TMA) problem by incorporating deep reinforcement learning (DRL) techniques. Conventional methods often exhibit biases and struggle to achieve accurate results, especially when confronted with high levels of noise. In this letter, we formulate the BO-TMA problem as a Markov decision process (MDP) and process it within a DRL framework. Simulation results demonstrate that the proposed DRL-based estimator achieves reduced bias and lower errors compared to existing estimators.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 6","pages":"1298-1300"},"PeriodicalIF":19.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11036663","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11036663/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Dear Editor, This letter introduces a novel approach to address the bearings-only target motion analysis (BO-TMA) problem by incorporating deep reinforcement learning (DRL) techniques. Conventional methods often exhibit biases and struggle to achieve accurate results, especially when confronted with high levels of noise. In this letter, we formulate the BO-TMA problem as a Markov decision process (MDP) and process it within a DRL framework. Simulation results demonstrate that the proposed DRL-based estimator achieves reduced bias and lower errors compared to existing estimators.
基于深度强化学习的方位目标运动分析
这封信介绍了一种新方法,通过结合深度强化学习(DRL)技术来解决仅针对轴承的目标运动分析(BO-TMA)问题。传统的方法往往表现出偏差,难以获得准确的结果,特别是在面对高水平的噪声时。在这封信中,我们将BO-TMA问题表述为马尔可夫决策过程(MDP),并在DRL框架内处理它。仿真结果表明,与现有的估计器相比,基于drl的估计器实现了更小的偏差和更低的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信