Impact of viscosity index modifiers with different architectures and functionalities on the thermophysical properties and viscosity of a mineral base oil
Katrina Avery , Melanie Lindblom , Liza Peoples , Erdogan Kiran , Mark T. Devlin
{"title":"Impact of viscosity index modifiers with different architectures and functionalities on the thermophysical properties and viscosity of a mineral base oil","authors":"Katrina Avery , Melanie Lindblom , Liza Peoples , Erdogan Kiran , Mark T. Devlin","doi":"10.1016/j.jct.2025.107516","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the influence of viscosity index modifiers on the high-pressure and temperature thermophysical and rheological properties of a mineral base oil, Ultra S4. The viscosity index modifiers tested included polymethacrylates, ethylene-propylene block copolymers and star-styrene butadiene copolymers. Densities were determined at pressures in the range of 10–35 MPa and at 298, 323, 348, 373, and 398 K using a high-pressure variable-volume view-cell. The density data were then correlated with the Sanchez-Lacombe Equation of State from which the thermodynamic properties of isothermal compressibility, isobaric expansivity and internal pressure were derived. Viscosities were determined at pressures in the range of 10–45 MPa and at 298, 323, 348 and 373 K using a uniquely designed high-pressure rotational viscometer. High pressure density and viscosity results were correlated with free volume and density-scaling equations to provide further insight into molecular packing and interactions. Additionally, intrinsic viscosity measurements were performed to evaluate the semi-dilute regime and the radius of gyration at 30 °C and 50 °C.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"210 ","pages":"Article 107516"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961425000709","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the influence of viscosity index modifiers on the high-pressure and temperature thermophysical and rheological properties of a mineral base oil, Ultra S4. The viscosity index modifiers tested included polymethacrylates, ethylene-propylene block copolymers and star-styrene butadiene copolymers. Densities were determined at pressures in the range of 10–35 MPa and at 298, 323, 348, 373, and 398 K using a high-pressure variable-volume view-cell. The density data were then correlated with the Sanchez-Lacombe Equation of State from which the thermodynamic properties of isothermal compressibility, isobaric expansivity and internal pressure were derived. Viscosities were determined at pressures in the range of 10–45 MPa and at 298, 323, 348 and 373 K using a uniquely designed high-pressure rotational viscometer. High pressure density and viscosity results were correlated with free volume and density-scaling equations to provide further insight into molecular packing and interactions. Additionally, intrinsic viscosity measurements were performed to evaluate the semi-dilute regime and the radius of gyration at 30 °C and 50 °C.
期刊介绍:
The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published.
The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed.
Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered.
The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review.
Contributions of a routine nature or reporting on uncharacterised materials are not accepted.