Friedrich Fink , Tomasz M. Stawski , Franziska Emmerling , Jana Falkenhagen
{"title":"A novel machine-learning approach to unlock technical lignin classification by NIR spectroscopy - bench to handheld","authors":"Friedrich Fink , Tomasz M. Stawski , Franziska Emmerling , Jana Falkenhagen","doi":"10.1016/j.chemolab.2025.105467","DOIUrl":null,"url":null,"abstract":"<div><div>In this research, the utilization of near-infrared (NIR) spectroscopy in conjunction with advanced machine learning methods is investigated for categorizing technical lignins obtained from different biomass sources and industrial procedures. Technical lignins, such as kraft, organosolv and lignosulfonates, have different chemical compositions, which continue to make uniform characterization and application in sustainable sectors extremely difficult. Fast, universally accessible analytics combined with data analysis is still an open question. For the first time three distinct NIR spectrometers—a high-performance benchtop system, a mid-priced compact device, and an economical handheld unit—were utilized to record NIR spectra of 31 unique lignin samples. The spectra underwent pre-processing through standard normal variate (SNV) transformation and Savitzky-Golay derivatives to amplify spectral features and decrease noise. Principal component analysis (PCA) was employed to reduce data complexity and extract crucial characteristics for classification purposes. Subsequently, four machine learning algorithms—Support Vector Machines (SVM), Gaussian Naive Bayes (GNB), Gaussian Process Classification (GPC), and Decision Tree Classification (DTC)—were implemented for the classification of the lignin samples. The DTC model exhibited the highest accuracy among them across different spectrometers. Although the benchtop spectrometer produced the most precise outcomes, the compact NeoSpectra system also displayed potential as a cost-efficient option. Nonetheless, the restricted spectral coverage of the handheld NIRONE spectrometer resulted in reduced classification accuracy. Our discoveries highlight the capability of NIR spectroscopy, combined with robust data analysis techniques, for the swift and non-destructive classification of technical lignins, facilitating their improved utilization in sustainable fields.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"264 ","pages":"Article 105467"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743925001522","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, the utilization of near-infrared (NIR) spectroscopy in conjunction with advanced machine learning methods is investigated for categorizing technical lignins obtained from different biomass sources and industrial procedures. Technical lignins, such as kraft, organosolv and lignosulfonates, have different chemical compositions, which continue to make uniform characterization and application in sustainable sectors extremely difficult. Fast, universally accessible analytics combined with data analysis is still an open question. For the first time three distinct NIR spectrometers—a high-performance benchtop system, a mid-priced compact device, and an economical handheld unit—were utilized to record NIR spectra of 31 unique lignin samples. The spectra underwent pre-processing through standard normal variate (SNV) transformation and Savitzky-Golay derivatives to amplify spectral features and decrease noise. Principal component analysis (PCA) was employed to reduce data complexity and extract crucial characteristics for classification purposes. Subsequently, four machine learning algorithms—Support Vector Machines (SVM), Gaussian Naive Bayes (GNB), Gaussian Process Classification (GPC), and Decision Tree Classification (DTC)—were implemented for the classification of the lignin samples. The DTC model exhibited the highest accuracy among them across different spectrometers. Although the benchtop spectrometer produced the most precise outcomes, the compact NeoSpectra system also displayed potential as a cost-efficient option. Nonetheless, the restricted spectral coverage of the handheld NIRONE spectrometer resulted in reduced classification accuracy. Our discoveries highlight the capability of NIR spectroscopy, combined with robust data analysis techniques, for the swift and non-destructive classification of technical lignins, facilitating their improved utilization in sustainable fields.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.