{"title":"Safe delay-adaptive control of strict-feedback nonlinear systems with application in vehicle platooning","authors":"Zhenxu Zhao, Ji Wang","doi":"10.1016/j.automatica.2025.112442","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a safe delay-adaptive control for a strict-feedback nonlinear ODE with a delayed actuator, whose dynamic is also a strict-feedback nonlinear ODE and the delay length is unknown. By formulating the delay as a transport PDE, the plant becomes a sandwich configuration consisting of nonlinear ODE-transport PDE-nonlinear ODE, where the transport speed in the PDE is unknown. We propose a predictor-based nonovershooting backstepping transformation to build the nominal safe delay-compensated control, guaranteeing that the output of the distal ODE safely tracks the target trajectory from one side without undershooting. To address the uncertainty in the delay, we incorporate recent delay-adaptive and safe adaptive technologies to build a safe adaptive-delay controller. The adaptive closed-loop system ensures (1) the exact identification of the unknown delay in finite time; (2) the output state stays in the safe region all the time, especially in the original safe region, instead of a subset, after a finite time; (3) all states are bounded, and moreover, they will converge to zero if the target trajectory is identically zero. In the simulation, the proposed control design is verified in the application of safe vehicle platooning. It regulates the spacing between adjacent vehicles to converge to a small distance and avoids collisions by ensuring they do not breach the safe distance at any time, even in the presence of large unknown delays and at a relatively high speed.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"179 ","pages":"Article 112442"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000510982500336X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a safe delay-adaptive control for a strict-feedback nonlinear ODE with a delayed actuator, whose dynamic is also a strict-feedback nonlinear ODE and the delay length is unknown. By formulating the delay as a transport PDE, the plant becomes a sandwich configuration consisting of nonlinear ODE-transport PDE-nonlinear ODE, where the transport speed in the PDE is unknown. We propose a predictor-based nonovershooting backstepping transformation to build the nominal safe delay-compensated control, guaranteeing that the output of the distal ODE safely tracks the target trajectory from one side without undershooting. To address the uncertainty in the delay, we incorporate recent delay-adaptive and safe adaptive technologies to build a safe adaptive-delay controller. The adaptive closed-loop system ensures (1) the exact identification of the unknown delay in finite time; (2) the output state stays in the safe region all the time, especially in the original safe region, instead of a subset, after a finite time; (3) all states are bounded, and moreover, they will converge to zero if the target trajectory is identically zero. In the simulation, the proposed control design is verified in the application of safe vehicle platooning. It regulates the spacing between adjacent vehicles to converge to a small distance and avoids collisions by ensuring they do not breach the safe distance at any time, even in the presence of large unknown delays and at a relatively high speed.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.