Rikun Huang , Chunli Zhao , Jinhan Yang , Bingfeng Lu , Yi Dai , Miaomiao Lin , Xiang Zhao , Haipeng Huang , Xiaoyu Pan , Liling Lu , Lina Chen , Kai Li
{"title":"Nomogram based on radiomics and CT features for predicting visceral pleural invasion of invasive adenocarcinoma ≤ 2 cm: A multicenter study","authors":"Rikun Huang , Chunli Zhao , Jinhan Yang , Bingfeng Lu , Yi Dai , Miaomiao Lin , Xiang Zhao , Haipeng Huang , Xiaoyu Pan , Liling Lu , Lina Chen , Kai Li","doi":"10.1016/j.ejrad.2025.112227","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To explore the value of a nomogram based on radiomics and computed tomography (CT) features for preoperative prediction of visceral pleural invasion (VPI) of subpleural, small (≤2 cm) invasive adenocarcinoma (IAC) of the lung.</div></div><div><h3>Methods</h3><div>For this retrospective study, 457 cases of invasive lung adenocarcinoma ≤ 2 cm were collected from three tertiary hospitals in Guangxi and used in a training group (n = 254), validation group (n = 112), and test group (n = 91). Risk factors for IAC VPI were screened by univariate and multivariate logistic regression analyses, and a CT model was constructed. Radiomics features of regions representing the gross tumor area (GTA), peritumor area (PTA), and gross peritumor area (GPTA) were extracted from CT images, and the optimal feature subsets based on radiomics score were selected to construct three radiomics models. A combination model was then constructed from the radiomics model with the optimal radiomics score and the CT model and visualized by nomogram. Model performance was analyzed by receiver operating characteristic curve analysis and DeLong test.</div></div><div><h3>Results</h3><div>Pleural indentation (<em>P <</em> 0.05), pleural thickening (<em>P <</em> 1e-04), and tumor diameter (<em>P <</em> 0.001) were identified as risk factors of the CT model for predicting VPI of IAC. Among 1226 radiomics features, 5, 13, and 12 optimal features were selected for the GTA, PTA, and GPTA models, respectively, and the area under the curve (AUC) values did not differ among these models. Based on AUC values, the CT model and GPTA model features were combined to construct the predictive nomogram. Compared with the individual models, the nomogram exhibited better accuracy, specificity, and AUC values (AUC values for training, verification, and test groups were 0.86, 0.84, and 0.86, respectively). Calibration curve and decision curve analyses showed that the nomogram outperformed traditional CT features and radiomics studies, and could offer greater clinical benefit.</div></div><div><h3>Conclusions</h3><div>The developed nomogram combining CT and radiomics features shows high diagnostic value for VPI prediction of IAC of the lung.</div></div>","PeriodicalId":12063,"journal":{"name":"European Journal of Radiology","volume":"190 ","pages":"Article 112227"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0720048X25003134","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
To explore the value of a nomogram based on radiomics and computed tomography (CT) features for preoperative prediction of visceral pleural invasion (VPI) of subpleural, small (≤2 cm) invasive adenocarcinoma (IAC) of the lung.
Methods
For this retrospective study, 457 cases of invasive lung adenocarcinoma ≤ 2 cm were collected from three tertiary hospitals in Guangxi and used in a training group (n = 254), validation group (n = 112), and test group (n = 91). Risk factors for IAC VPI were screened by univariate and multivariate logistic regression analyses, and a CT model was constructed. Radiomics features of regions representing the gross tumor area (GTA), peritumor area (PTA), and gross peritumor area (GPTA) were extracted from CT images, and the optimal feature subsets based on radiomics score were selected to construct three radiomics models. A combination model was then constructed from the radiomics model with the optimal radiomics score and the CT model and visualized by nomogram. Model performance was analyzed by receiver operating characteristic curve analysis and DeLong test.
Results
Pleural indentation (P < 0.05), pleural thickening (P < 1e-04), and tumor diameter (P < 0.001) were identified as risk factors of the CT model for predicting VPI of IAC. Among 1226 radiomics features, 5, 13, and 12 optimal features were selected for the GTA, PTA, and GPTA models, respectively, and the area under the curve (AUC) values did not differ among these models. Based on AUC values, the CT model and GPTA model features were combined to construct the predictive nomogram. Compared with the individual models, the nomogram exhibited better accuracy, specificity, and AUC values (AUC values for training, verification, and test groups were 0.86, 0.84, and 0.86, respectively). Calibration curve and decision curve analyses showed that the nomogram outperformed traditional CT features and radiomics studies, and could offer greater clinical benefit.
Conclusions
The developed nomogram combining CT and radiomics features shows high diagnostic value for VPI prediction of IAC of the lung.
期刊介绍:
European Journal of Radiology is an international journal which aims to communicate to its readers, state-of-the-art information on imaging developments in the form of high quality original research articles and timely reviews on current developments in the field.
Its audience includes clinicians at all levels of training including radiology trainees, newly qualified imaging specialists and the experienced radiologist. Its aim is to inform efficient, appropriate and evidence-based imaging practice to the benefit of patients worldwide.