MRI-based Alzheimer’s disease classification using Vision Transformer and time-series transformer: A step-by-step guide

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Sait Alp , Sara Akan , Taymaz Akan , Mohammad Alfrad Nobel Bhuiyan
{"title":"MRI-based Alzheimer’s disease classification using Vision Transformer and time-series transformer: A step-by-step guide","authors":"Sait Alp ,&nbsp;Sara Akan ,&nbsp;Taymaz Akan ,&nbsp;Mohammad Alfrad Nobel Bhuiyan","doi":"10.1016/j.simpa.2025.100771","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a reproducible pipeline for classifying Alzheimer’s Disease from structural brain MRI utilizing a joint transformer architecture that integrates Vision Transformer and Time-Series Transformer models. The proposed framework uses pre-trained ViT for feature extraction from 2D slices of MRI volumes, followed by sequential modeling with a transformer-based classifier to capture inter-slice dependencies. The method is evaluated on the ADNI dataset, involving both binary (AD vs. NC) and multiclass (AD, MCI, NC) classification tasks across axial, sagittal, and coronal planes.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"25 ","pages":"Article 100771"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963825000314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a reproducible pipeline for classifying Alzheimer’s Disease from structural brain MRI utilizing a joint transformer architecture that integrates Vision Transformer and Time-Series Transformer models. The proposed framework uses pre-trained ViT for feature extraction from 2D slices of MRI volumes, followed by sequential modeling with a transformer-based classifier to capture inter-slice dependencies. The method is evaluated on the ADNI dataset, involving both binary (AD vs. NC) and multiclass (AD, MCI, NC) classification tasks across axial, sagittal, and coronal planes.
基于mri的阿尔茨海默病分类使用视觉变压器和时间序列变压器:一步一步的指南
本研究介绍了一种可重复的管道,利用集成视觉变压器和时间序列变压器模型的联合变压器架构,从结构脑MRI中对阿尔茨海默病进行分类。所提出的框架使用预训练的ViT从MRI体积的二维切片中提取特征,然后使用基于变压器的分类器进行顺序建模以捕获切片间的依赖关系。该方法在ADNI数据集上进行了评估,包括二元(AD vs. NC)和多类别(AD, MCI, NC)跨轴向,矢状面和冠状面分类任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信