Nathaniel Warren , Chloe Skidmore , Katherine J. Harmon , Wonsuk Cha , Jon-Paul Maria , Stephan O. Hruszkewycz , Darren C. Pagan
{"title":"Processing-dependent chemical ordering in Cu3Au characterized via non-destructive Bragg coherent diffraction imaging","authors":"Nathaniel Warren , Chloe Skidmore , Katherine J. Harmon , Wonsuk Cha , Jon-Paul Maria , Stephan O. Hruszkewycz , Darren C. Pagan","doi":"10.1016/j.scriptamat.2025.116820","DOIUrl":null,"url":null,"abstract":"<div><div>Of current importance for alloy design is controlling chemical ordering through processing routes to optimize an alloy's mechanical properties for a desired application. However, characterization of chemical ordering remains an ongoing challenge, particularly when nondestructive characterization is needed. In this study, Bragg coherent diffraction imaging is used to reconstruct morphology and lattice displacement in model Cu<sub>3</sub>Au nanocrystals that have undergone different heat treatments to produce variation in chemical ordering. The magnitudes and distributions of the scattering amplitudes (proportional to electron density) and lattice strains within these crystals are then analyzed to correlate them to the expected amount of chemical ordering present. Nanocrystals with increased amounts of ordering are found to generally have less extreme strains present and reduced strain distribution widths. In addition, statistical correlations are found between the spatial arrangement of scattering amplitude and lattice strains.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"267 ","pages":"Article 116820"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225002830","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Of current importance for alloy design is controlling chemical ordering through processing routes to optimize an alloy's mechanical properties for a desired application. However, characterization of chemical ordering remains an ongoing challenge, particularly when nondestructive characterization is needed. In this study, Bragg coherent diffraction imaging is used to reconstruct morphology and lattice displacement in model Cu3Au nanocrystals that have undergone different heat treatments to produce variation in chemical ordering. The magnitudes and distributions of the scattering amplitudes (proportional to electron density) and lattice strains within these crystals are then analyzed to correlate them to the expected amount of chemical ordering present. Nanocrystals with increased amounts of ordering are found to generally have less extreme strains present and reduced strain distribution widths. In addition, statistical correlations are found between the spatial arrangement of scattering amplitude and lattice strains.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.