Arian Kola , Nicolas Quéméré , Charlène Gadais , Daniela Valensin
{"title":"NMR insights into the behavior of bis-His motifs toward copper ions: A study using mono-N-methylated histidines","authors":"Arian Kola , Nicolas Quéméré , Charlène Gadais , Daniela Valensin","doi":"10.1016/j.jinorgbio.2025.112973","DOIUrl":null,"url":null,"abstract":"<div><div>The bis-histidine (bis-His) motif, formed by two adjacent histidines, plays a central role in metal coordination within biological systems. Its versatility stems from the imidazole ring of histidine, which offers two distinct nitrogen donors (Nδ/Nπ and Nε/Nτ). This motif contributes to enzymatic activity, redox processes, and metal homeostasis in proteins and peptides. To investigate its coordination properties, we developed a four-point comparative model based on the Aβ<sub>12–16</sub> pentapeptide, introducing selective mono-<em>N</em>-methylation of histidine residues. This strategy enabled a detailed NMR-based characterization of the bis-His motif in the presence of Cu (II) and Cu (I). For Cu(II), distinct paramagnetic relaxation effects were observed depending on the methylation site, reflecting differences in metal–ligand coordination sphere. Similarly, variations in chemical shift induced by Ag(I), used as a probe for Cu(I), confirmed differential interactions with the imidazole nitrogens. The His-His pair was found to act as a structurally flexible binding site able to accommodate both copper oxidation state. Our findings highlight a clear preference for Nπ coordination, with specific patterns of interaction depending on the oxidation state and histidine modification. Reactivity studies in the presence of the endogenous antioxidant glutathione (GSH) further confirmed the role of histidine coordination within the bis-His motif in Cu(II)/Cu(I) redox cycling. Notably, the redox behavior was influenced by the specific imidazole nitrogen involved in metal coordination, with distinct reactivity patterns observed depending on whether the Nπ or Nτ nitrogen was engaged.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"271 ","pages":"Article 112973"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013425001539","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The bis-histidine (bis-His) motif, formed by two adjacent histidines, plays a central role in metal coordination within biological systems. Its versatility stems from the imidazole ring of histidine, which offers two distinct nitrogen donors (Nδ/Nπ and Nε/Nτ). This motif contributes to enzymatic activity, redox processes, and metal homeostasis in proteins and peptides. To investigate its coordination properties, we developed a four-point comparative model based on the Aβ12–16 pentapeptide, introducing selective mono-N-methylation of histidine residues. This strategy enabled a detailed NMR-based characterization of the bis-His motif in the presence of Cu (II) and Cu (I). For Cu(II), distinct paramagnetic relaxation effects were observed depending on the methylation site, reflecting differences in metal–ligand coordination sphere. Similarly, variations in chemical shift induced by Ag(I), used as a probe for Cu(I), confirmed differential interactions with the imidazole nitrogens. The His-His pair was found to act as a structurally flexible binding site able to accommodate both copper oxidation state. Our findings highlight a clear preference for Nπ coordination, with specific patterns of interaction depending on the oxidation state and histidine modification. Reactivity studies in the presence of the endogenous antioxidant glutathione (GSH) further confirmed the role of histidine coordination within the bis-His motif in Cu(II)/Cu(I) redox cycling. Notably, the redox behavior was influenced by the specific imidazole nitrogen involved in metal coordination, with distinct reactivity patterns observed depending on whether the Nπ or Nτ nitrogen was engaged.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.