Generalized electrical Lie algebras

IF 1.5 1区 数学 Q1 MATHEMATICS
Arkady Berenstein , Azat Gainutdinov , Vassily Gorbounov
{"title":"Generalized electrical Lie algebras","authors":"Arkady Berenstein ,&nbsp;Azat Gainutdinov ,&nbsp;Vassily Gorbounov","doi":"10.1016/j.aim.2025.110405","DOIUrl":null,"url":null,"abstract":"<div><div>We generalize the electrical Lie algebras originally introduced by Lam and Pylyavskyy in several ways. To each Kac-Moody Lie algebra <span><math><mi>g</mi></math></span> we associate two types (vertex type and edge type) of the generalized electrical algebras. The electrical Lie algebras of vertex type are always subalgebras of <span><math><mi>g</mi></math></span> and are flat deformations of the nilpotent Lie subalgebra of <span><math><mi>g</mi></math></span>. In many cases including <span><math><mi>s</mi><msub><mrow><mi>l</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><mi>s</mi><msub><mrow><mi>o</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and <span><math><mi>s</mi><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span> we find new (edge) models for our generalized electrical Lie algebras of vertex type. Finding an edge model in general is an interesting open problem.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"478 ","pages":"Article 110405"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003032","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize the electrical Lie algebras originally introduced by Lam and Pylyavskyy in several ways. To each Kac-Moody Lie algebra g we associate two types (vertex type and edge type) of the generalized electrical algebras. The electrical Lie algebras of vertex type are always subalgebras of g and are flat deformations of the nilpotent Lie subalgebra of g. In many cases including sln, son, and sp2n we find new (edge) models for our generalized electrical Lie algebras of vertex type. Finding an edge model in general is an interesting open problem.
广义电李代数
我们将最初由Lam和Pylyavskyy引入的电李代数进行了几种推广。对于每个Kac-Moody李代数g,我们将广义电代数的两种类型(顶点型和边型)联系起来。顶点型电李代数总是g的子代数,是g的幂零李子代数的平面变形。在包括sln, son和sp2n在内的许多情况下,我们为我们的顶点型广义电李代数找到了新的(边)模型。一般来说,寻找边缘模型是一个有趣的开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信