High-precision and efficient suppression of pathological brain activity in Parkinsonian rats via a closed-loop deep brain stimulation approach

Ramesh Perumal , Jenq-Wei Yang , Yu-Hsiu Kuo , Vincent Vigneron , Hsing-Hua Ho , Hugues Almorin , Chi-Fen Chuang , Yen-Chung Chang , Shih-Rung Yeh , Hsin Chen
{"title":"High-precision and efficient suppression of pathological brain activity in Parkinsonian rats via a closed-loop deep brain stimulation approach","authors":"Ramesh Perumal ,&nbsp;Jenq-Wei Yang ,&nbsp;Yu-Hsiu Kuo ,&nbsp;Vincent Vigneron ,&nbsp;Hsing-Hua Ho ,&nbsp;Hugues Almorin ,&nbsp;Chi-Fen Chuang ,&nbsp;Yen-Chung Chang ,&nbsp;Shih-Rung Yeh ,&nbsp;Hsin Chen","doi":"10.1016/j.jdbs.2025.06.001","DOIUrl":null,"url":null,"abstract":"<div><div>The increase of high-voltage spindles (HVSs) in the basal ganglia network is a hallmark of dopamine depletion in Parkinsonian rats. Emerging evidence highlights the efficacy of deep brain stimulation (DBS) in suppressing HVSs. It is of significant interest to investigate whether suppressing HVSs can mitigate pathological neuron synchrony in the basal ganglia, particularly in early-stage Parkinson's disease. To effectively suppress HVSs using DBS, we developed a closed-loop stimulator triggered by HVS occurrence. Based on autoregressive modeling at intervals, a predictive model was created with parameters trainable offline using the Kalman filter to detect the onset of HVSs, which is suitable for hardware implementation. This model identified all 1131 HVS episodes from four Parkinsonian rats using 144 ms of preceding data, achieving a 94 % mean precision and a mean latency of 72 ms—well below the average HVS duration of 4.3 s. Additionally, it achieves comparable latency while requiring 95 % less computational time than the previous wavelet-based HVS detection model. With the trained model implemented in a microcontroller, we further investigated the effects of closed-loop DBS (cDBS) on HVSs in free-moving Parkinsonian rats with a tethered and wireless system, respectively. In both setups, a stimulation duration as brief as 0.2 s effectively suppressed HVSs. Furthermore, using the wireless system, the inhibition of HVS lasted over 30 min post-cDBS application. These findings underscore the potential of cDBS to suppress HVSs, lower stimulation dosages, and reduce side effects, paving the way for its application in early-stage Parkinson's disease treatment through neuromodulation.</div></div>","PeriodicalId":100359,"journal":{"name":"Deep Brain Stimulation","volume":"9 ","pages":"Pages 7-17"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep Brain Stimulation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294966912500003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increase of high-voltage spindles (HVSs) in the basal ganglia network is a hallmark of dopamine depletion in Parkinsonian rats. Emerging evidence highlights the efficacy of deep brain stimulation (DBS) in suppressing HVSs. It is of significant interest to investigate whether suppressing HVSs can mitigate pathological neuron synchrony in the basal ganglia, particularly in early-stage Parkinson's disease. To effectively suppress HVSs using DBS, we developed a closed-loop stimulator triggered by HVS occurrence. Based on autoregressive modeling at intervals, a predictive model was created with parameters trainable offline using the Kalman filter to detect the onset of HVSs, which is suitable for hardware implementation. This model identified all 1131 HVS episodes from four Parkinsonian rats using 144 ms of preceding data, achieving a 94 % mean precision and a mean latency of 72 ms—well below the average HVS duration of 4.3 s. Additionally, it achieves comparable latency while requiring 95 % less computational time than the previous wavelet-based HVS detection model. With the trained model implemented in a microcontroller, we further investigated the effects of closed-loop DBS (cDBS) on HVSs in free-moving Parkinsonian rats with a tethered and wireless system, respectively. In both setups, a stimulation duration as brief as 0.2 s effectively suppressed HVSs. Furthermore, using the wireless system, the inhibition of HVS lasted over 30 min post-cDBS application. These findings underscore the potential of cDBS to suppress HVSs, lower stimulation dosages, and reduce side effects, paving the way for its application in early-stage Parkinson's disease treatment through neuromodulation.
通过闭环脑深部刺激方法高精度、高效地抑制帕金森大鼠病理性脑活动
基底神经节网络中高压纺锤体(HVSs)的增加是帕金森大鼠多巴胺耗竭的标志。新出现的证据强调了深部脑刺激(DBS)在抑制HVSs方面的功效。研究抑制HVSs是否可以减轻基底神经节的病理性神经元同步,特别是在早期帕金森病中,具有重要的意义。为了使用DBS有效抑制HVS,我们开发了一种由HVS发生触发的闭环刺激器。在间隔自回归建模的基础上,利用卡尔曼滤波建立了一个参数可离线训练的预测模型来检测hvs的发生,该模型适合硬件实现。该模型利用144 ms的前期数据识别了4只帕金森大鼠的所有1131次HVS发作,平均精度为94 %,平均潜伏期为72 ms,远低于平均HVS持续时间4.3 s。此外,与之前基于小波的HVS检测模型相比,它的计算时间减少了95% %,同时实现了相当的延迟。通过在微控制器中实现训练模型,我们进一步研究了闭环DBS (cDBS)对自由运动帕金森大鼠HVSs的影响,分别采用系绳和无线系统。在这两种设置中,刺激持续时间只要0.2 s就能有效抑制hvs。此外,使用无线系统,cdbs应用后对HVS的抑制持续了30 min以上。这些发现强调了cDBS抑制HVSs、降低刺激剂量和减少副作用的潜力,为其通过神经调节治疗早期帕金森病铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信