Thumb: A forensic automation framework leveraging MLLMs and OCR on Android device

IF 2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Dingjie Shang, Amin Sakzad, Stuart W. Hall
{"title":"Thumb: A forensic automation framework leveraging MLLMs and OCR on Android device","authors":"Dingjie Shang,&nbsp;Amin Sakzad,&nbsp;Stuart W. Hall","doi":"10.1016/j.fsidi.2025.301949","DOIUrl":null,"url":null,"abstract":"<div><div>The forensic of Android devices is challenging due to automated thumbnail generation by applications and the operating system, complicating attribution to specific user actions. This paper presents the design, implementation, and evaluation of a forensic framework, Thumb, which performs real-time experiments on physical Android devices. Thumb integrates multimodal large language models (MLLM) and Optical Character Recognition (OCR) to capture on-screen information and simulate user interactions, while extracting data from internal storage to monitor changes in cached and thumbnail files. A proof-of-concept implementation demonstrates the framework's accuracy across various applications, highlighting its potential to simplify Android forensic analysis. However, current MLLM limitations and the framework's structure pose challenges in complex scenarios and detailed data analysis.</div></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":"54 ","pages":"Article 301949"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281725000885","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The forensic of Android devices is challenging due to automated thumbnail generation by applications and the operating system, complicating attribution to specific user actions. This paper presents the design, implementation, and evaluation of a forensic framework, Thumb, which performs real-time experiments on physical Android devices. Thumb integrates multimodal large language models (MLLM) and Optical Character Recognition (OCR) to capture on-screen information and simulate user interactions, while extracting data from internal storage to monitor changes in cached and thumbnail files. A proof-of-concept implementation demonstrates the framework's accuracy across various applications, highlighting its potential to simplify Android forensic analysis. However, current MLLM limitations and the framework's structure pose challenges in complex scenarios and detailed data analysis.
Thumb:在Android设备上利用mlm和OCR的取证自动化框架
Android设备的取证具有挑战性,因为应用程序和操作系统会自动生成缩略图,这使得对特定用户行为的归因变得复杂。本文介绍了一个取证框架Thumb的设计、实现和评估,该框架可以在物理Android设备上进行实时实验。Thumb集成了多模态大语言模型(MLLM)和光学字符识别(OCR)来捕捉屏幕上的信息并模拟用户交互,同时从内部存储中提取数据以监控缓存和缩略图文件的变化。概念验证实现演示了该框架在各种应用程序中的准确性,突出了其简化Android取证分析的潜力。然而,当前MLLM的局限性和框架的结构给复杂场景和详细数据分析带来了挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信