Particle acceleration and multi-messenger radiation from ultra-luminous X-ray sources

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Enrico Peretti, Maria Petropoulou, Georgios Vasilopoulos, Stefano Gabici
{"title":"Particle acceleration and multi-messenger radiation from ultra-luminous X-ray sources","authors":"Enrico Peretti, Maria Petropoulou, Georgios Vasilopoulos, Stefano Gabici","doi":"10.1051/0004-6361/202452987","DOIUrl":null,"url":null,"abstract":"Super-Eddington accretion onto stellar-mass compact objects powers fast outflows in ultra-luminous X-ray sources (ULXs). Such outflows, which can reach mildly relativistic velocities, are often observed forming bubble structures. Wind bubbles are expected to develop strong wind termination shocks, which are sites of great interest for diffusive shock acceleration. We developed a model of diffusive shock acceleration in the wind bubbles powered by ULXs. We find that the maximum energy in these objects can easily reach the PeV range, promoting winds from ULXs as a new class of PeVatrons. We specialized our model in the context of the Galactic source SS 433 and show that high-energy protons in the bubble might explain the highest energy photons (>100 TeV) and their morphology recently observed by LHAASO. In this paper, we discuss the detectability of such a source in neutrinos, and we analyze the possible radio counterpart of ULXs focusing on the case of W50, the nebula surrounding SS 433. Finally, we discuss the possible contribution of Galactic ULXs to the cosmic-ray flux at the knee, concluding that their role could be significant only if one of these sources, currently undetected, were sufficiently close.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"25 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452987","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Super-Eddington accretion onto stellar-mass compact objects powers fast outflows in ultra-luminous X-ray sources (ULXs). Such outflows, which can reach mildly relativistic velocities, are often observed forming bubble structures. Wind bubbles are expected to develop strong wind termination shocks, which are sites of great interest for diffusive shock acceleration. We developed a model of diffusive shock acceleration in the wind bubbles powered by ULXs. We find that the maximum energy in these objects can easily reach the PeV range, promoting winds from ULXs as a new class of PeVatrons. We specialized our model in the context of the Galactic source SS 433 and show that high-energy protons in the bubble might explain the highest energy photons (>100 TeV) and their morphology recently observed by LHAASO. In this paper, we discuss the detectability of such a source in neutrinos, and we analyze the possible radio counterpart of ULXs focusing on the case of W50, the nebula surrounding SS 433. Finally, we discuss the possible contribution of Galactic ULXs to the cosmic-ray flux at the knee, concluding that their role could be significant only if one of these sources, currently undetected, were sufficiently close.
粒子加速和超亮x射线源的多信使辐射
恒星质量致密物体上的超级爱丁顿吸积为超亮x射线源(ULXs)的快速流出提供动力。这种可以达到轻微相对论速度的流出物经常被观察到形成气泡结构。预计风泡会产生强烈的风终止激波,这是扩散激波加速的重要研究领域。我们建立了一个由ulx驱动的风泡中的扩散激波加速度模型。我们发现这些物体的最大能量可以很容易地达到PeV范围,促进ulx风作为一种新的pevatron。我们在银河系源SS 433的背景下专门建立了我们的模型,并表明气泡中的高能质子可能解释了LHAASO最近观测到的最高能量光子(bbb100 TeV)及其形态。在本文中,我们讨论了这种源在中微子中的可探测性,并以围绕SS 433的星云W50为例,分析了ulx可能的射电对应体。最后,我们讨论了银河ulx对膝部宇宙射线通量的可能贡献,得出的结论是,只有当其中一个目前未被探测到的源足够接近时,它们的作用才可能是显著的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信