{"title":"A single dose of a vectorized mAb targeting TDP-43 potently inhibits the neuropathology in a model of ALS/FTD.","authors":"Greg Del Val,Florence Gauye,Mickaël Audrain,Sébastien Menant,Monisha Ratnam,Elodie Chevalier,Romain Ollier,Daisy Bhatia,Tamara Seredenina,Tariq Afroz,Andrea Pfeifer,Marie Kosco-Vilbois,Damien Nevoltris","doi":"10.1016/j.ymthe.2025.06.026","DOIUrl":null,"url":null,"abstract":"TAR DNA binding protein-43 (TDP-43)-mediated pathology is a hallmark of devastating neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Thus, monoclonal antibodies (mAbs) are being developed to target the pathological forms of this protein. To improve mAb exposure within the central nervous system, a potent anti-TDP-43 mAb, ACI-5891, was generated as a vectorized full-length antibody (vmAb) and evaluated for brain delivery using adeno-associated virus 9 (AAV9). Among the expression cassettes explored, the selected construct utilized an internal ribosome entry site (IRES), which produced high expression yields in vitro (>200 mg/L) with comparable quality, binding and functional properties to the conventionally produced mAb. A single intracisternal administration of vmAb ACI-5891 demonstrated a broad brain distribution and sustained expression (i.e., months) in the serum, cerebrospinal fluid and brain of mice. In a mouse model of ALS/FTD, treatment with a vmAb reduced the amount of pathological phospho-TDP-43 in neurons by 58% and 68% when expressed either using a ubiquitous promoter or a brain-selective promoter, respectively. This innovative approach sufficiently delivers effective immunotherapy with a single dose and illustrates the enormous potential of using vectorized antibodies to target neuropathology, including TDP-43 in patients suffering from ALS, FTD and other TDP-43 proteinopathies.","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":"7 1","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.06.026","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
TAR DNA binding protein-43 (TDP-43)-mediated pathology is a hallmark of devastating neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Thus, monoclonal antibodies (mAbs) are being developed to target the pathological forms of this protein. To improve mAb exposure within the central nervous system, a potent anti-TDP-43 mAb, ACI-5891, was generated as a vectorized full-length antibody (vmAb) and evaluated for brain delivery using adeno-associated virus 9 (AAV9). Among the expression cassettes explored, the selected construct utilized an internal ribosome entry site (IRES), which produced high expression yields in vitro (>200 mg/L) with comparable quality, binding and functional properties to the conventionally produced mAb. A single intracisternal administration of vmAb ACI-5891 demonstrated a broad brain distribution and sustained expression (i.e., months) in the serum, cerebrospinal fluid and brain of mice. In a mouse model of ALS/FTD, treatment with a vmAb reduced the amount of pathological phospho-TDP-43 in neurons by 58% and 68% when expressed either using a ubiquitous promoter or a brain-selective promoter, respectively. This innovative approach sufficiently delivers effective immunotherapy with a single dose and illustrates the enormous potential of using vectorized antibodies to target neuropathology, including TDP-43 in patients suffering from ALS, FTD and other TDP-43 proteinopathies.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.