Jiepei He, Yuhan Zhou, Hector M Arredondo Carrera, Nan Li, Alison Gartland, Ning Wang
{"title":"Depletion of P2X4 receptor alleviates prostate cancer bone metastasis through reduced cancer cell invasiveness and enhanced cell adhesion activities.","authors":"Jiepei He, Yuhan Zhou, Hector M Arredondo Carrera, Nan Li, Alison Gartland, Ning Wang","doi":"10.1007/s11302-025-10096-5","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer (PCa) preferentially metastasizes to bone, which remains incurable and contributes significantly to mortality and morbidity. The P2X4 receptor (P2X4R) is a receptor for ATP that is highly expressed in many cancer types including PCa and is positively associated with tumorigenesis. To understand the role of P2X4R in PCa biology, particularly in PCa bone metastasis, P2X4R (P2RX4) was knocked out in human PCa cell line PC3 cells using the CRISPR/Cas9 system. Cell proliferation, apoptosis, migration, and invasion were examined using CyQUANT, Cell Meter Caspase 3/7, scratch and transwell assays. Results showed that depleting P2X4R significantly reduced cell proliferation and invasion and increased apoptosis compared to PC3 wildtype (WT) controls in vitro. To test their metastatic potential in vivo, PC3 WT and knock-out (KO) cells were intracardiacally injected into male BALB/c immunocompromised mice. Twenty-five days post-injection, there were no detectable tumours and associated bone destruction in the tibias of mice injected with KO cells, whereas tibias of over 50% mice injected with WT cells were occupied by tumour cells, with significant bone destruction observed ex vivo using micro-CT. Furthermore, RNA-seq and bioinformatic analysis of P2X4R KO cells demonstrated links between P2X4R and PCa cell adhesion, and other key signalling such as Wnt signalling. These findings suggest that P2X4R is a potential therapeutic target for PCa metastasis, particularly bone metastasis.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-025-10096-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Prostate cancer (PCa) preferentially metastasizes to bone, which remains incurable and contributes significantly to mortality and morbidity. The P2X4 receptor (P2X4R) is a receptor for ATP that is highly expressed in many cancer types including PCa and is positively associated with tumorigenesis. To understand the role of P2X4R in PCa biology, particularly in PCa bone metastasis, P2X4R (P2RX4) was knocked out in human PCa cell line PC3 cells using the CRISPR/Cas9 system. Cell proliferation, apoptosis, migration, and invasion were examined using CyQUANT, Cell Meter Caspase 3/7, scratch and transwell assays. Results showed that depleting P2X4R significantly reduced cell proliferation and invasion and increased apoptosis compared to PC3 wildtype (WT) controls in vitro. To test their metastatic potential in vivo, PC3 WT and knock-out (KO) cells were intracardiacally injected into male BALB/c immunocompromised mice. Twenty-five days post-injection, there were no detectable tumours and associated bone destruction in the tibias of mice injected with KO cells, whereas tibias of over 50% mice injected with WT cells were occupied by tumour cells, with significant bone destruction observed ex vivo using micro-CT. Furthermore, RNA-seq and bioinformatic analysis of P2X4R KO cells demonstrated links between P2X4R and PCa cell adhesion, and other key signalling such as Wnt signalling. These findings suggest that P2X4R is a potential therapeutic target for PCa metastasis, particularly bone metastasis.
期刊介绍:
Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.