Yan Hang , Mario Alex Miranda , Ziqiao Yan , Weichen Zhao , Seung K. Kim
{"title":"Isolation of live human δ cells for genetic and functional analysis","authors":"Yan Hang , Mario Alex Miranda , Ziqiao Yan , Weichen Zhao , Seung K. Kim","doi":"10.1016/j.molmet.2025.102188","DOIUrl":null,"url":null,"abstract":"<div><div>Investigations of human pancreatic islets have been empowered by strategies to isolate and study live islet cell subsets, like β cells and α cells. To advance experimentation with human islet δ cells, which remain relatively understudied, we generated combinatorial cell sorting approaches to separate human δ cells from β cells, yielding highly-enriched human δ cells. We used molecular analysis, immunohistology, and electroporation-based targeting to demonstrate the quality of δ cell purification. We also demonstrated the feasibility of prospectively studying human δ cell function in pseudoislet organoids. Innovations detailed here should promote discovery of genetic, signaling and physiological mechanisms governing δ cell function and roles in human islets.</div></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"98 ","pages":"Article 102188"},"PeriodicalIF":7.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221287782500095X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Investigations of human pancreatic islets have been empowered by strategies to isolate and study live islet cell subsets, like β cells and α cells. To advance experimentation with human islet δ cells, which remain relatively understudied, we generated combinatorial cell sorting approaches to separate human δ cells from β cells, yielding highly-enriched human δ cells. We used molecular analysis, immunohistology, and electroporation-based targeting to demonstrate the quality of δ cell purification. We also demonstrated the feasibility of prospectively studying human δ cell function in pseudoislet organoids. Innovations detailed here should promote discovery of genetic, signaling and physiological mechanisms governing δ cell function and roles in human islets.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.