{"title":"Transcriptomic basis of within- and trans-generational predator-induced plasticity in the freshwater snail Physa acuta.","authors":"Léo Dejeux, Nathanaëlle Saclier, Juliette Tariel-Adam, Maxime Hoareau, Tristan Lefébure, Lara Konecny, Sandrine Plénet, Emilien Luquet","doi":"10.1038/s41437-025-00775-9","DOIUrl":null,"url":null,"abstract":"<p><p>Inducible defences in response to predation risk are a well-known example of adaptive phenotypic plasticity. Although inducible defences have been studied mainly within a generation (within-generational plasticity), there is now clear evidence that ancestral exposure to predation risk can influence the defences expressed by offspring, even if they have not been exposed themselves (transgenerational plasticity). The molecular mechanisms allowing the transmission of environmental information across generations are not well understood. In this study, we combined measures of antipredator responses (behavioural and morphological) with transcriptomic investigations across two generations in the freshwater snail Physa acuta. We hypothesised that both within- and transgenerational plasticity would induce phenotypic changes associated with differential gene expression. Our results confirmed within- and transgenerational plasticity: F1 snails respond to predator-cue exposure by increasing escape behaviour, reducing shell length, and developing thicker and slenderer shells, whereas F2 snails from exposed parents have longer and thicker shells with narrower apertures. Within- and transgenerational plasticity were accompanied by the differential expression of 112 genes (101 up- and 11 downregulated) and 23 differentially expressed genes (17 up- and 6 downregulated), respectively. Within- and transgenerational plasticity did not share common differentially expressed genes, but the associated molecular functions, involving metabolism and transcription regulation, were similar. These results suggest that predator-induced within-generational plasticity and transgenerational plasticity may result from different genomic pathways and may evolve independently.</p>","PeriodicalId":12991,"journal":{"name":"Heredity","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41437-025-00775-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inducible defences in response to predation risk are a well-known example of adaptive phenotypic plasticity. Although inducible defences have been studied mainly within a generation (within-generational plasticity), there is now clear evidence that ancestral exposure to predation risk can influence the defences expressed by offspring, even if they have not been exposed themselves (transgenerational plasticity). The molecular mechanisms allowing the transmission of environmental information across generations are not well understood. In this study, we combined measures of antipredator responses (behavioural and morphological) with transcriptomic investigations across two generations in the freshwater snail Physa acuta. We hypothesised that both within- and transgenerational plasticity would induce phenotypic changes associated with differential gene expression. Our results confirmed within- and transgenerational plasticity: F1 snails respond to predator-cue exposure by increasing escape behaviour, reducing shell length, and developing thicker and slenderer shells, whereas F2 snails from exposed parents have longer and thicker shells with narrower apertures. Within- and transgenerational plasticity were accompanied by the differential expression of 112 genes (101 up- and 11 downregulated) and 23 differentially expressed genes (17 up- and 6 downregulated), respectively. Within- and transgenerational plasticity did not share common differentially expressed genes, but the associated molecular functions, involving metabolism and transcription regulation, were similar. These results suggest that predator-induced within-generational plasticity and transgenerational plasticity may result from different genomic pathways and may evolve independently.
期刊介绍:
Heredity is the official journal of the Genetics Society. It covers a broad range of topics within the field of genetics and therefore papers must address conceptual or applied issues of interest to the journal''s wide readership