The spatiotemporal heterogeneity of reactive oxygen species in the malignant transformation of viral hepatitis to hepatocellular carcinoma: a new insight.
{"title":"The spatiotemporal heterogeneity of reactive oxygen species in the malignant transformation of viral hepatitis to hepatocellular carcinoma: a new insight.","authors":"Huimin Yuan, Jia Liu, Ruochen Xu, Keshan Yang, Ruiyang Qu, Shuai Liu, Yonghui Zhang, Ming Xiang","doi":"10.1186/s11658-025-00745-3","DOIUrl":null,"url":null,"abstract":"<p><p>During the transformation of viral hepatitis into hepatocellular carcinoma (HCC), oxidative stress levels increase significantly, leading to tissue damage and chronic inflammation. HCC is characterized by spatiotemporal heterogeneity, which influences oxidative stress patterns, with reactive oxygen species (ROS) as the primary representative molecules. ROS serve not only as critical biomarkers of cancer but also as potential therapeutic targets for HCC, given that their increased levels can either promote or inhibit disease progression. In this review, we systematically examine the temporal heterogeneity of ROS, emphasizing its role in different stages of HCC progression caused by viral hepatitis and in influencing cell fate. We further explore ROS spatial heterogeneity at three levels: cellular, organelle, and biomolecular. Next, we comprehensively review clinical applications and potential therapies designed to selectively modulate ROS on the basis of its spatiotemporal heterogeneity. Finally, we discuss potential future applications of novel therapies that target ROS spatiotemporal heterogeneity to prevent and manage HCC onset and progression. In conclusion, this review enhances understanding of ROS in the progression of viral hepatitis to HCC and offers insights into developing new therapeutic targets and strategies centered on ROS heterogeneity.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"30 1","pages":"70"},"PeriodicalIF":9.2000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular & Molecular Biology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s11658-025-00745-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During the transformation of viral hepatitis into hepatocellular carcinoma (HCC), oxidative stress levels increase significantly, leading to tissue damage and chronic inflammation. HCC is characterized by spatiotemporal heterogeneity, which influences oxidative stress patterns, with reactive oxygen species (ROS) as the primary representative molecules. ROS serve not only as critical biomarkers of cancer but also as potential therapeutic targets for HCC, given that their increased levels can either promote or inhibit disease progression. In this review, we systematically examine the temporal heterogeneity of ROS, emphasizing its role in different stages of HCC progression caused by viral hepatitis and in influencing cell fate. We further explore ROS spatial heterogeneity at three levels: cellular, organelle, and biomolecular. Next, we comprehensively review clinical applications and potential therapies designed to selectively modulate ROS on the basis of its spatiotemporal heterogeneity. Finally, we discuss potential future applications of novel therapies that target ROS spatiotemporal heterogeneity to prevent and manage HCC onset and progression. In conclusion, this review enhances understanding of ROS in the progression of viral hepatitis to HCC and offers insights into developing new therapeutic targets and strategies centered on ROS heterogeneity.
期刊介绍:
Cellular & Molecular Biology Letters is an international journal dedicated to the dissemination of fundamental knowledge in all areas of cellular and molecular biology, cancer cell biology, and certain aspects of biochemistry, biophysics and biotechnology.