{"title":"Insights into Noncanonical and Diversified Functions of ABCF1: From Health to Disease","authors":"Junyi Duan , Prince Saini , Yick W. Fong","doi":"10.1016/j.jmb.2025.169286","DOIUrl":null,"url":null,"abstract":"<div><div>The ATP-binding cassette (ABC) family is one of the largest and most ancient classes of transporters found in nearly all living organisms. However, ABCF1 lacks a transmembrane domain and therefore does not function as a transporter. Recent studies point to an unexpectedly diverse role of ABCF1 in regulating cell-essential processes from mRNA translation, innate immune response, and phagocytosis in somatic cells, to transcriptional regulation in embryonic stem cells. ABCF1’s functional plasticity is in part mediated by its disordered low-complexity domain (LCD) to enable dynamic biomolecular interactions. In this review, we discuss how ABCF1 takes advantage of the LCD to expand its functional repertoire and highlight fundamental principles of biomolecular assembly driving biological reactions. We also discuss the functions and mechanisms of ABCF1 in development and tissue homeostasis, and how dysregulation of ABCF1 contributes to diseases such as inflammatory disease and cancer.</div></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"437 17","pages":"Article 169286"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283625003523","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ATP-binding cassette (ABC) family is one of the largest and most ancient classes of transporters found in nearly all living organisms. However, ABCF1 lacks a transmembrane domain and therefore does not function as a transporter. Recent studies point to an unexpectedly diverse role of ABCF1 in regulating cell-essential processes from mRNA translation, innate immune response, and phagocytosis in somatic cells, to transcriptional regulation in embryonic stem cells. ABCF1’s functional plasticity is in part mediated by its disordered low-complexity domain (LCD) to enable dynamic biomolecular interactions. In this review, we discuss how ABCF1 takes advantage of the LCD to expand its functional repertoire and highlight fundamental principles of biomolecular assembly driving biological reactions. We also discuss the functions and mechanisms of ABCF1 in development and tissue homeostasis, and how dysregulation of ABCF1 contributes to diseases such as inflammatory disease and cancer.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.