Density Functional Theory Study of the Reductive Removal of Epoxide Oxygen From Small Polycyclic Aromatic Hydrocarbon Surface

IF 1.8 4区 化学 Q2 CHEMISTRY, ORGANIC
Hiroshi Kawabata, Hiroto Tachikawa, Masahiro Shinoda
{"title":"Density Functional Theory Study of the Reductive Removal of Epoxide Oxygen From Small Polycyclic Aromatic Hydrocarbon Surface","authors":"Hiroshi Kawabata,&nbsp;Hiroto Tachikawa,&nbsp;Masahiro Shinoda","doi":"10.1002/poc.70022","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The conductivity of graphene oxide is significantly increases when it is reduced, and oxygen is removed. In this study, the mechanism of deoxygenation of the epoxide sites of small polycyclic aromatic hydrocarbons (PAHs) with triphenylphosphine (PPh<sub>3</sub>) was investigated using DFT. When PPh<sub>3</sub> attacks the epoxide oxygen, the carbon–oxygen bond is immediately cleaved by electron transfer, and the oxygen is then abstracted to form triphenylphosphine oxide. The reaction was found to be single-step and different from that of three-membered ring ethers, which are not bound to PAHs. The activation energy for deoxygenation is approximately 20 kcal/mol, and the reaction is exothermic.</p>\n </div>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"38 7","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.70022","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

The conductivity of graphene oxide is significantly increases when it is reduced, and oxygen is removed. In this study, the mechanism of deoxygenation of the epoxide sites of small polycyclic aromatic hydrocarbons (PAHs) with triphenylphosphine (PPh3) was investigated using DFT. When PPh3 attacks the epoxide oxygen, the carbon–oxygen bond is immediately cleaved by electron transfer, and the oxygen is then abstracted to form triphenylphosphine oxide. The reaction was found to be single-step and different from that of three-membered ring ethers, which are not bound to PAHs. The activation energy for deoxygenation is approximately 20 kcal/mol, and the reaction is exothermic.

小多环芳烃表面环氧氧还原脱除的密度泛函理论研究
氧化石墨烯的电导率在还原、除氧时显著提高。本文研究了三苯基膦(PPh3)对小多环芳烃(PAHs)环氧化物位点的脱氧机理。当PPh3攻击环氧氧时,碳氧键立即通过电子转移被劈开,然后氧被抽离形成氧化三苯基膦。发现该反应是单步反应,与不与多环芳烃结合的三元环醚反应不同。脱氧反应的活化能约为20 kcal/mol,反应为放热反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
11.10%
发文量
161
审稿时长
2.3 months
期刊介绍: The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信