{"title":"Variational principles for fully coupled stochastic fluid dynamics across scales","authors":"Arnaud Debussche, Etienne Mémin","doi":"10.1016/j.physd.2025.134777","DOIUrl":null,"url":null,"abstract":"<div><div>This work investigates variational frameworks for modeling stochastic dynamics in incompressible fluids, focusing on large-scale fluid behavior alongside small-scale stochastic processes. The authors aim to develop a coupled system of equations that captures both scales, using a variational principle formulated with Lagrangians defined on the full flow, and incorporating stochastic transport constraints. The approach smooths the noise term along time, leading to stochastic dynamics as a regularization parameter approaches zero. Initially, fixed noise terms are considered, resulting in a generalized stochastic Euler equation, which becomes problematic as the regularization parameter diminishes. The study then examines connections with existing stochastic frameworks and proposes a new variational principle that couples noise dynamics with large-scale fluid motion. This comprehensive framework provides a stochastic representation of large-scale dynamics while accounting for fine-scale components. Our main result is that the evolution of the small-scale velocity component is governed by a linearized Euler equation with random coefficients, influenced by large-scale transport, stretching, and pressure forcing.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134777"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925002544","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This work investigates variational frameworks for modeling stochastic dynamics in incompressible fluids, focusing on large-scale fluid behavior alongside small-scale stochastic processes. The authors aim to develop a coupled system of equations that captures both scales, using a variational principle formulated with Lagrangians defined on the full flow, and incorporating stochastic transport constraints. The approach smooths the noise term along time, leading to stochastic dynamics as a regularization parameter approaches zero. Initially, fixed noise terms are considered, resulting in a generalized stochastic Euler equation, which becomes problematic as the regularization parameter diminishes. The study then examines connections with existing stochastic frameworks and proposes a new variational principle that couples noise dynamics with large-scale fluid motion. This comprehensive framework provides a stochastic representation of large-scale dynamics while accounting for fine-scale components. Our main result is that the evolution of the small-scale velocity component is governed by a linearized Euler equation with random coefficients, influenced by large-scale transport, stretching, and pressure forcing.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.