SrTMO2.5 with chirally-ordered oxygen vacancies: A first-principles study

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yu Cao , Yi-Chi Zhang , Yan Sun , Liang Si , Xing-Qiu Chen , Peitao Liu
{"title":"SrTMO2.5 with chirally-ordered oxygen vacancies: A first-principles study","authors":"Yu Cao ,&nbsp;Yi-Chi Zhang ,&nbsp;Yan Sun ,&nbsp;Liang Si ,&nbsp;Xing-Qiu Chen ,&nbsp;Peitao Liu","doi":"10.1016/j.commatsci.2025.114010","DOIUrl":null,"url":null,"abstract":"<div><div>Oxygen vacancies are atomic-level crystal defects that are commonly found in transition-metal oxides and significantly affect their physical and chemical properties. Here, we systematically investigated the structural, dynamical, electronic, and magnetic properties of a series of compounds, namely Sr<span><math><mrow><mi>T</mi><mi>M</mi></mrow></math></span>O<sub>2.5</sub> (<span><math><mrow><mi>T</mi><mi>M</mi></mrow></math></span>=Ti, V, Cr, Mn, Fe, Co, and Ni), using first-principles calculations. Particularly, we focused on the structure with chirally-ordered oxygen vacancies (COV). We determined the ground-state phase of Sr<span><math><mrow><mi>T</mi><mi>M</mi></mrow></math></span>O<sub>2.5</sub> by assessing the energetics of possible structural configurations with different magnetic states. Our results showed that Sr<span><math><mrow><mi>T</mi><mi>M</mi></mrow></math></span>O<sub>2.5</sub> (<span><math><mrow><mi>T</mi><mi>M</mi></mrow></math></span>=Ti and V) favor the configurations with vertical-chain vacancies, Sr<span><math><mrow><mi>T</mi><mi>M</mi></mrow></math></span>O<sub>2.5</sub> (<span><math><mrow><mi>T</mi><mi>M</mi></mrow></math></span>=Cr, Fe, Co and Ni) stabilize the brownmillerite configuration, and only SrMnO<sub>2.5</sub> stabilizes the COV configuration. Phonon calculations revealed that except for SrVO<sub>2.5</sub>, all other considered COV phases of Sr<span><math><mrow><mi>T</mi><mi>M</mi></mrow></math></span>O<sub>2.5</sub> are dynamically stable. As compared to the cubic Sr<span><math><mrow><mi>T</mi><mi>M</mi></mrow></math></span>O<sub>3</sub> counterparts, the COV phases of Sr<span><math><mrow><mi>T</mi><mi>M</mi></mrow></math></span>O<sub>2.5</sub> exhibit distinct electronic and magnetic structures. Specifically, the COV phases of SrTiO<sub>2.5</sub>, SrNiO<sub>2.5</sub>, and Sr<span><math><mrow><mi>T</mi><mi>M</mi></mrow></math></span>O<sub>2.5</sub> (<span><math><mrow><mi>T</mi><mi>M</mi></mrow></math></span>=Cr, Mn, Fe, and Co) are predicted to be a ferromagnetic semiconductor, a ferromagnetic metal, and antiferromagnetic semiconductors, respectively. Finally, we studied the electronic correlation effects using dynamical mean-field theory, which revealed the magnetic semiconducting characteristics at room temperature for all dynamically-stable COV phases of Sr<span><math><mrow><mi>T</mi><mi>M</mi></mrow></math></span>O<sub>2.5</sub>. The energetic and dynamic stabilities as well as varied electronic and magnetic properties enable these compounds to hold potential for functional applications.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"258 ","pages":"Article 114010"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625003532","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Oxygen vacancies are atomic-level crystal defects that are commonly found in transition-metal oxides and significantly affect their physical and chemical properties. Here, we systematically investigated the structural, dynamical, electronic, and magnetic properties of a series of compounds, namely SrTMO2.5 (TM=Ti, V, Cr, Mn, Fe, Co, and Ni), using first-principles calculations. Particularly, we focused on the structure with chirally-ordered oxygen vacancies (COV). We determined the ground-state phase of SrTMO2.5 by assessing the energetics of possible structural configurations with different magnetic states. Our results showed that SrTMO2.5 (TM=Ti and V) favor the configurations with vertical-chain vacancies, SrTMO2.5 (TM=Cr, Fe, Co and Ni) stabilize the brownmillerite configuration, and only SrMnO2.5 stabilizes the COV configuration. Phonon calculations revealed that except for SrVO2.5, all other considered COV phases of SrTMO2.5 are dynamically stable. As compared to the cubic SrTMO3 counterparts, the COV phases of SrTMO2.5 exhibit distinct electronic and magnetic structures. Specifically, the COV phases of SrTiO2.5, SrNiO2.5, and SrTMO2.5 (TM=Cr, Mn, Fe, and Co) are predicted to be a ferromagnetic semiconductor, a ferromagnetic metal, and antiferromagnetic semiconductors, respectively. Finally, we studied the electronic correlation effects using dynamical mean-field theory, which revealed the magnetic semiconducting characteristics at room temperature for all dynamically-stable COV phases of SrTMO2.5. The energetic and dynamic stabilities as well as varied electronic and magnetic properties enable these compounds to hold potential for functional applications.
具有手性有序氧空位的SrTMO2.5:第一性原理研究
氧空位是在过渡金属氧化物中常见的原子级晶体缺陷,对其物理和化学性质有重要影响。在这里,我们系统地研究了一系列化合物SrTMO2.5 (TM=Ti, V, Cr, Mn, Fe, Co, and Ni)的结构,动力学,电子和磁性能。我们特别关注具有手性有序氧空位(COV)的结构。我们通过评估SrTMO2.5在不同磁态下可能的结构构型的能量学来确定其基态相。结果表明,SrTMO2.5 (TM=Ti和V)有利于具有垂直链空位的构型,SrTMO2.5 (TM=Cr、Fe、Co和Ni)有利于稳定褐磨矿构型,只有SrMnO2.5能够稳定COV构型。声子计算表明,除了SrVO2.5外,SrTMO2.5的其他COV相位都是动态稳定的。与立方SrTMO3相相比,SrTMO2.5的COV相具有明显的电子和磁性结构。具体来说,SrTiO2.5、SrNiO2.5和SrTMO2.5 (TM=Cr、Mn、Fe和Co)的COV相分别预测为铁磁半导体、铁磁金属和反铁磁半导体。最后,我们利用动态平均场理论研究了SrTMO2.5的电子相关效应,揭示了SrTMO2.5所有动态稳定COV相在室温下的磁性半导体特性。能量和动态稳定性以及不同的电子和磁性能使这些化合物具有潜在的功能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信