Some Results on Critical (P5,H)-free Graphs

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Wen Xia , Jorik Jooken , Jan Goedgebeur , Shenwei Huang
{"title":"Some Results on Critical (P5,H)-free Graphs","authors":"Wen Xia ,&nbsp;Jorik Jooken ,&nbsp;Jan Goedgebeur ,&nbsp;Shenwei Huang","doi":"10.1016/j.tcs.2025.115411","DOIUrl":null,"url":null,"abstract":"<div><div>Given two graphs <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, a graph is <span><math><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-free if it contains no induced subgraph isomorphic to <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. A graph <em>G</em> is <em>k</em>-vertex-critical if every proper induced subgraph of <em>G</em> has chromatic number less than <em>k</em>, but <em>G</em> has chromatic number <em>k</em>. The study of <em>k</em>-vertex-critical graphs for specific graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there exists a polynomial-time certifying algorithm to decide the <em>k</em>-colorability of a graph in the class.</div><div>In this paper, we show that: (1) for <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, there are finitely many <em>k</em>-vertex-critical <span><math><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>4</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>-free graphs; (2) for <span><math><mi>s</mi><mo>≥</mo><mn>1</mn></math></span>, there are finitely many 5-vertex-critical <span><math><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>s</mi></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>-free graphs; (3) for <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, there are finitely many <em>k</em>-vertex-critical <span><math><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mn>2</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>‾</mo></mover><mo>)</mo></math></span>-free graphs. Moreover, we characterize all 5-vertex-critical <span><math><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><mi>H</mi><mo>)</mo></math></span>-free graphs where <span><math><mi>H</mi><mo>∈</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>4</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mn>2</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>‾</mo></mover><mo>}</mo></math></span> using an exhaustive graph generation algorithm.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1051 ","pages":"Article 115411"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525003494","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Given two graphs H1 and H2, a graph is (H1,H2)-free if it contains no induced subgraph isomorphic to H1 or H2. A graph G is k-vertex-critical if every proper induced subgraph of G has chromatic number less than k, but G has chromatic number k. The study of k-vertex-critical graphs for specific graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there exists a polynomial-time certifying algorithm to decide the k-colorability of a graph in the class.
In this paper, we show that: (1) for k1, there are finitely many k-vertex-critical (P5,K1,4+P1)-free graphs; (2) for s1, there are finitely many 5-vertex-critical (P5,K1,s+P1)-free graphs; (3) for k1, there are finitely many k-vertex-critical (P5,K3+2P1)-free graphs. Moreover, we characterize all 5-vertex-critical (P5,H)-free graphs where H{K1,3+P1,K1,4+P1,K3+2P1} using an exhaustive graph generation algorithm.
临界(P5,H)自由图的一些结果
给定两个图H1和H2,如果图中不包含与H1或H2同构的诱导子图,则图是(H1,H2)自由的。图G是k-vertex-critical如果每个适当的诱导子图G的彩色数字不到k,但克色数k。k-vertex-critical图的研究为特定的图类算法图论中的一个重要话题,因为如果在给定的类图的数量遗传图类是有限的,那么证明存在一个多项式时间算法决定k-colorability图的类。在本文中,我们证明了:(1)当k≥1时,存在有限多个k点临界(P5,K1,4+P1)自由图;(2)当s≥1时,存在有限多个5点临界(P5,K1,s+P1)自由图;(3)对于k≥1,存在有限多个k-顶点临界(P5,K3+2P1)自由图。此外,我们使用穷举图生成算法描述了所有5顶点临界(P5,H)自由图,其中H∈{K1,3+P1,K1,4+P1,K3+2P1}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信