{"title":"Some Results on Critical (P5,H)-free Graphs","authors":"Wen Xia , Jorik Jooken , Jan Goedgebeur , Shenwei Huang","doi":"10.1016/j.tcs.2025.115411","DOIUrl":null,"url":null,"abstract":"<div><div>Given two graphs <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, a graph is <span><math><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-free if it contains no induced subgraph isomorphic to <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. A graph <em>G</em> is <em>k</em>-vertex-critical if every proper induced subgraph of <em>G</em> has chromatic number less than <em>k</em>, but <em>G</em> has chromatic number <em>k</em>. The study of <em>k</em>-vertex-critical graphs for specific graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there exists a polynomial-time certifying algorithm to decide the <em>k</em>-colorability of a graph in the class.</div><div>In this paper, we show that: (1) for <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, there are finitely many <em>k</em>-vertex-critical <span><math><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>4</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>-free graphs; (2) for <span><math><mi>s</mi><mo>≥</mo><mn>1</mn></math></span>, there are finitely many 5-vertex-critical <span><math><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>s</mi></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>-free graphs; (3) for <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, there are finitely many <em>k</em>-vertex-critical <span><math><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mn>2</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>‾</mo></mover><mo>)</mo></math></span>-free graphs. Moreover, we characterize all 5-vertex-critical <span><math><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><mi>H</mi><mo>)</mo></math></span>-free graphs where <span><math><mi>H</mi><mo>∈</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>4</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mn>2</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>‾</mo></mover><mo>}</mo></math></span> using an exhaustive graph generation algorithm.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1051 ","pages":"Article 115411"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525003494","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Given two graphs and , a graph is -free if it contains no induced subgraph isomorphic to or . A graph G is k-vertex-critical if every proper induced subgraph of G has chromatic number less than k, but G has chromatic number k. The study of k-vertex-critical graphs for specific graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there exists a polynomial-time certifying algorithm to decide the k-colorability of a graph in the class.
In this paper, we show that: (1) for , there are finitely many k-vertex-critical -free graphs; (2) for , there are finitely many 5-vertex-critical -free graphs; (3) for , there are finitely many k-vertex-critical -free graphs. Moreover, we characterize all 5-vertex-critical -free graphs where using an exhaustive graph generation algorithm.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.