A data augmentation algorithm for surface inspection in point cloud data

Daan Büchner , Ole Schmedemann , Thorsten Schüppstuhl
{"title":"A data augmentation algorithm for surface inspection in point cloud data","authors":"Daan Büchner ,&nbsp;Ole Schmedemann ,&nbsp;Thorsten Schüppstuhl","doi":"10.1016/j.procir.2025.02.142","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the high standards in aircraft maintenance, high resolution sensors, such as white light interferometers, are needed. Those sensors scan surfaces in nanometer scale and generate point clouds. This data can be used to detect surface defects. Such anomalies should be identified during the inspection process to assess the current condition of the workpiece. Deep learning algorithms can be used to evaluate the data. However, in the domain of 3D data, the challenge of obtaining training data is amplified due to the time-consuming labeling process. Therefore, this work introduces an algorithm that combines surface features, like cracks, into surface data to generate new labeled training data. The resulting dataset is then used to train a deep learning algorithm to segment the cracks in the point cloud data. The results indicate that the augmented data enhances the training process.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"134 ","pages":"Pages 437-442"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827125005220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the high standards in aircraft maintenance, high resolution sensors, such as white light interferometers, are needed. Those sensors scan surfaces in nanometer scale and generate point clouds. This data can be used to detect surface defects. Such anomalies should be identified during the inspection process to assess the current condition of the workpiece. Deep learning algorithms can be used to evaluate the data. However, in the domain of 3D data, the challenge of obtaining training data is amplified due to the time-consuming labeling process. Therefore, this work introduces an algorithm that combines surface features, like cracks, into surface data to generate new labeled training data. The resulting dataset is then used to train a deep learning algorithm to segment the cracks in the point cloud data. The results indicate that the augmented data enhances the training process.
一种点云数据表面检测的数据增强算法
由于飞机维修的高标准,需要高分辨率的传感器,如白光干涉仪。这些传感器扫描纳米尺度的表面并产生点云。该数据可用于检测表面缺陷。这些异常应在检查过程中识别,以评估工件的当前状况。深度学习算法可以用来评估数据。然而,在3D数据领域,由于耗时的标记过程,获得训练数据的挑战被放大了。因此,本工作引入了一种算法,将裂缝等表面特征结合到表面数据中,生成新的标记训练数据。然后使用生成的数据集训练深度学习算法来分割点云数据中的裂缝。结果表明,增强后的数据增强了训练过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信