Deconvolution density estimation on Lie groups without auxiliary data

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Jeong Min Jeon
{"title":"Deconvolution density estimation on Lie groups without auxiliary data","authors":"Jeong Min Jeon","doi":"10.1016/j.jmva.2025.105464","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study density estimation on a general Lie group when data contain measurement errors and the distribution of measurement error is unknown. We estimate the target density without additional observations, such as an observable random sample from the measurement error distribution or repeated measurements. To achieve this, we take a semiparametric approach assuming that the measurement error distribution belongs to a parametric family. We also discuss maximum likelihood estimation for the case where the target density is also parametric. We establish the identifiability of a measurement error model and derive various asymptotic properties for our estimators. The performance of our estimators is demonstrated via simulation studies.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"209 ","pages":"Article 105464"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000594","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study density estimation on a general Lie group when data contain measurement errors and the distribution of measurement error is unknown. We estimate the target density without additional observations, such as an observable random sample from the measurement error distribution or repeated measurements. To achieve this, we take a semiparametric approach assuming that the measurement error distribution belongs to a parametric family. We also discuss maximum likelihood estimation for the case where the target density is also parametric. We establish the identifiability of a measurement error model and derive various asymptotic properties for our estimators. The performance of our estimators is demonstrated via simulation studies.
无辅助数据李群的反褶积密度估计
本文研究了含有测量误差且测量误差分布未知的一般李群的密度估计问题。我们估计目标密度没有额外的观察,如可观察的随机样本从测量误差分布或重复测量。为了实现这一点,我们采用半参数方法,假设测量误差分布属于参数族。我们还讨论了目标密度也是参数的情况下的最大似然估计。我们建立了测量误差模型的可辨识性,并给出了估计量的各种渐近性质。通过仿真研究证明了我们的估计器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信