Anticlockwise metamorphic evolution of the Tin Hallen area (Ahnet Terrane, NW Hoggar, Algeria): Evidence for granulitic and blueschist-facies metamorphism in Fe-Ti metagabbros
{"title":"Anticlockwise metamorphic evolution of the Tin Hallen area (Ahnet Terrane, NW Hoggar, Algeria): Evidence for granulitic and blueschist-facies metamorphism in Fe-Ti metagabbros","authors":"Malika Mokri , Khadidja Ouzegane , Sid Ali Doukkari , Saida Ait Djafer , Jean-Robert Kienast , Zouhir Adjerid , Nadia Boureghda , Hamid Haddoum","doi":"10.1016/j.chemer.2024.126245","DOIUrl":null,"url":null,"abstract":"<div><div>The Tin Hallen area (Ahnet terrane, NW Hoggar, Algeria) represents one of the most well-preserved examples of blueschist-facies metamorphism in West Gondwana, associated with Fe<img>Ti garnet-bearing metagabbros. The textural analysis reveals four distinct stages. The first stage (M1) is magmatic, characterized by an orthopyroxene, plagioclase ± clinopyroxene, and ilmenite assemblage, primarily observed in areas distant from shear zones. The second stage (M2) involves the development of granulite-facies coronae and symplectites composed of garnet, clinopyroxene2, quartz, rutile, and brown amphibole. The third stage (M3) is defined by the appearance of green amphibole, sphene and epidote. Finally, the fourth stage (M4) is marked by the formation of glaucophane-bearing schists, indicating an advanced retrograde evolution within shear zones. Through the integration of thermodynamic modeling (P-T-M<sub>H2O</sub> pseudosections), petrology, mineral chemistry, and reaction textures, a counterclockwise P-T path has been established for the area. The Tin Hallen metagabbros display a prominent granulitic imprint surrounding magmatic relicts in H<sub>2</sub>O-undersaturated conditions. This evolution reflects a pressure increase at nearly constant temperature, progressing from c. 6 kbar and c. 900 °C (M1) to 9–10.5 kbar and 850–900 °C (M2), likely linked to the thickening of the magmatic arc root, as suggested by other international studies. The granulitization is followed by further pressure increases and temperature decreases, leading to the mylonitic garnet amphibolite stage (M3) at ~14 kbar and 740 °C, along with a significant rise in M<sub>H2O</sub>. Moreover, the presence of an original blueschist-facies stage (M4) with high-pressure, low-temperature (HP-LT) conditions (c. 8 kbar and 470 °C) is characteristic of cold subduction gradients (10–15 °C/km).</div></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"85 2","pages":"Article 126245"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Der Erde-Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009281924001703","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Tin Hallen area (Ahnet terrane, NW Hoggar, Algeria) represents one of the most well-preserved examples of blueschist-facies metamorphism in West Gondwana, associated with FeTi garnet-bearing metagabbros. The textural analysis reveals four distinct stages. The first stage (M1) is magmatic, characterized by an orthopyroxene, plagioclase ± clinopyroxene, and ilmenite assemblage, primarily observed in areas distant from shear zones. The second stage (M2) involves the development of granulite-facies coronae and symplectites composed of garnet, clinopyroxene2, quartz, rutile, and brown amphibole. The third stage (M3) is defined by the appearance of green amphibole, sphene and epidote. Finally, the fourth stage (M4) is marked by the formation of glaucophane-bearing schists, indicating an advanced retrograde evolution within shear zones. Through the integration of thermodynamic modeling (P-T-MH2O pseudosections), petrology, mineral chemistry, and reaction textures, a counterclockwise P-T path has been established for the area. The Tin Hallen metagabbros display a prominent granulitic imprint surrounding magmatic relicts in H2O-undersaturated conditions. This evolution reflects a pressure increase at nearly constant temperature, progressing from c. 6 kbar and c. 900 °C (M1) to 9–10.5 kbar and 850–900 °C (M2), likely linked to the thickening of the magmatic arc root, as suggested by other international studies. The granulitization is followed by further pressure increases and temperature decreases, leading to the mylonitic garnet amphibolite stage (M3) at ~14 kbar and 740 °C, along with a significant rise in MH2O. Moreover, the presence of an original blueschist-facies stage (M4) with high-pressure, low-temperature (HP-LT) conditions (c. 8 kbar and 470 °C) is characteristic of cold subduction gradients (10–15 °C/km).
期刊介绍:
GEOCHEMISTRY was founded as Chemie der Erde 1914 in Jena, and, hence, is one of the oldest journals for geochemistry-related topics.
GEOCHEMISTRY (formerly Chemie der Erde / Geochemistry) publishes original research papers, short communications, reviews of selected topics, and high-class invited review articles addressed at broad geosciences audience. Publications dealing with interdisciplinary questions are particularly welcome. Young scientists are especially encouraged to submit their work. Contributions will be published exclusively in English. The journal, through very personalized consultation and its worldwide distribution, offers entry into the world of international scientific communication, and promotes interdisciplinary discussion on chemical problems in a broad spectrum of geosciences.
The following topics are covered by the expertise of the members of the editorial board (see below):
-cosmochemistry, meteoritics-
igneous, metamorphic, and sedimentary petrology-
volcanology-
low & high temperature geochemistry-
experimental - theoretical - field related studies-
mineralogy - crystallography-
environmental geosciences-
archaeometry