Indu Sinha, Zachary Bitzer, Stephanie Barnett, Lisa Reinhart, Todd M. Umstead, Zissis C. Chroneos, Matthew Lanza, Dongxiao Sun, Junjia Zhu, John P. Richie Jr. and Raghu Sinha*,
{"title":"Short-Term and Long-Term Effects of Electronic Cigarettes on Mouse Lungs Following Nose-Only Exposures","authors":"Indu Sinha, Zachary Bitzer, Stephanie Barnett, Lisa Reinhart, Todd M. Umstead, Zissis C. Chroneos, Matthew Lanza, Dongxiao Sun, Junjia Zhu, John P. Richie Jr. and Raghu Sinha*, ","doi":"10.1021/acs.chemrestox.4c0052510.1021/acs.chemrestox.4c00525","DOIUrl":null,"url":null,"abstract":"<p >Health effects of electronic cigarettes (ECs) remain unknown, despite their popularity. We have determined that ECs produce highly reactive free radicals that could potentially cause damage in exposed tissues, mainly lungs. Goal for this study was to investigate the short- and long-term effects of ECs in mouse lungs. We focused on evaluating lung functions, oxidative stress related markers, and lung injury following nose-only exposures in male and female mice after 4- and 12-week periods. The EC exposure was modeled <i>in vivo</i> using nose-only exposures to C57BL/6 mice. For all studies, E-liquid (60:40; PG:VG) aerosols were compared to sham (compressed air) and to very low non-nicotine cigarette smoke (CS) controls in both sexes. Oxidative stress biomarkers (GSH, 8-Isoprostane, REDD1, and pGSK3β) and their selected downstream (RPS6) as well as upstream (AKT) target proteins in addition to pH2AX were measured by Western blot analysis. Lung function in mice was assessed by flexiVent and the injury scores were calculated following lung histology. Changes in cytology were also observed in cytospins from bronchoalveolar lavage (BALF). The lung injury (LI) score following 12-week exposures was significantly higher with EC and CS in female mice. Higher cell counts in BALF were mainly observed in CS exposed males and females at 4 and 12 weeks. 8-Isoprostane levels were significantly higher in EC and CS exposed males at 12 weeks. pGSK3β/GSK3β was low in males and higher in female mice at 4 weeks, and this difference was more pronounced at 12 weeks in CS exposed mice. Some mice exposed to EC and CS also showed DNA damage, as measured by pH2AX/H2AX expression. Based on the LI score, ECs were placed in between compressed air and CS. Our results showed the differentially expressed inflammation and oxidative stress/damage-related pathways from <i>in vivo</i> exposures to EC aerosols vs CS that could be an effective strategy for identifying EC relevant biomarkers of exposure and potential harm.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"38 6","pages":"1019–1036 1019–1036"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrestox.4c00525","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Health effects of electronic cigarettes (ECs) remain unknown, despite their popularity. We have determined that ECs produce highly reactive free radicals that could potentially cause damage in exposed tissues, mainly lungs. Goal for this study was to investigate the short- and long-term effects of ECs in mouse lungs. We focused on evaluating lung functions, oxidative stress related markers, and lung injury following nose-only exposures in male and female mice after 4- and 12-week periods. The EC exposure was modeled in vivo using nose-only exposures to C57BL/6 mice. For all studies, E-liquid (60:40; PG:VG) aerosols were compared to sham (compressed air) and to very low non-nicotine cigarette smoke (CS) controls in both sexes. Oxidative stress biomarkers (GSH, 8-Isoprostane, REDD1, and pGSK3β) and their selected downstream (RPS6) as well as upstream (AKT) target proteins in addition to pH2AX were measured by Western blot analysis. Lung function in mice was assessed by flexiVent and the injury scores were calculated following lung histology. Changes in cytology were also observed in cytospins from bronchoalveolar lavage (BALF). The lung injury (LI) score following 12-week exposures was significantly higher with EC and CS in female mice. Higher cell counts in BALF were mainly observed in CS exposed males and females at 4 and 12 weeks. 8-Isoprostane levels were significantly higher in EC and CS exposed males at 12 weeks. pGSK3β/GSK3β was low in males and higher in female mice at 4 weeks, and this difference was more pronounced at 12 weeks in CS exposed mice. Some mice exposed to EC and CS also showed DNA damage, as measured by pH2AX/H2AX expression. Based on the LI score, ECs were placed in between compressed air and CS. Our results showed the differentially expressed inflammation and oxidative stress/damage-related pathways from in vivo exposures to EC aerosols vs CS that could be an effective strategy for identifying EC relevant biomarkers of exposure and potential harm.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.