Synergistic structural-electronic strategy enhances magnetic relaxation in DyIII single-molecule magnets

IF 4.7 2区 化学 Q2 CHEMISTRY, PHYSICAL
Lin-Bo Cao, Han Yan, Qi Tan, Wen-Bin Sun
{"title":"Synergistic structural-electronic strategy enhances magnetic relaxation in DyIII single-molecule magnets","authors":"Lin-Bo Cao,&nbsp;Han Yan,&nbsp;Qi Tan,&nbsp;Wen-Bin Sun","doi":"10.1016/j.molstruc.2025.142974","DOIUrl":null,"url":null,"abstract":"<div><div>Three new binuclear dysprosium complexes bridged by 4‑hydroxy-3,5-dimethoxybenzaldehyde (DMOAP), 2,6-dimethoxyphenol (DMOP), and 2,6-dimethoxy-4-methylphenol (DMOMP), formulated as [Dy<sub>2</sub>(NO<sub>3</sub>)<sub>4</sub>(DMOAP)<sub>2</sub>(SCN)<sub>2</sub>]·2(Et)<sub>3</sub>NH (<strong>1</strong>), [Dy<sub>2</sub>(NO<sub>3</sub>)<sub>4</sub>(DMOP)<sub>2</sub>(SCN)<sub>2</sub>]·2(Et)<sub>3</sub>NH (<strong>2</strong>) and [Dy<sub>2</sub>(NO<sub>3</sub>)<sub>4</sub>(DMOMP)<sub>2</sub>(SCN)<sub>2</sub>]·2(Et)<sub>3</sub>NH (<strong>3</strong>) were structurally and magnetically characterized. By varying the substituents on the DMOP bridge (electron-withdrawing and donating groups), we achieved fine-tuning of the Dy-Dy distances and the modulation to the Dy-Dy magnetic interactions, which ultimately resulting in enhanced single-molecule magnetic (SMM) properties<em>.</em> Dynamic magnetic measurement revealed that complexes <strong>1</strong>–<strong>3</strong> all exhibit characteristic single-molecule magnet behavior with effective energy barriers of 54.62 K, 105.46 K, and 129.96 K, respectively. Notably, complex <strong>3</strong> bridged by methyl-substituted DMOP exhibits magnetic hysteresis up to 4 K and a clear open hysteresis loop with a coercive field of 221 Oe is observed under zero applied DC field at 1.9 K, which is rarely observed in non-radical-bridged binuclear lanthanide SMMs.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1344 ","pages":"Article 142974"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286025016473","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Three new binuclear dysprosium complexes bridged by 4‑hydroxy-3,5-dimethoxybenzaldehyde (DMOAP), 2,6-dimethoxyphenol (DMOP), and 2,6-dimethoxy-4-methylphenol (DMOMP), formulated as [Dy2(NO3)4(DMOAP)2(SCN)2]·2(Et)3NH (1), [Dy2(NO3)4(DMOP)2(SCN)2]·2(Et)3NH (2) and [Dy2(NO3)4(DMOMP)2(SCN)2]·2(Et)3NH (3) were structurally and magnetically characterized. By varying the substituents on the DMOP bridge (electron-withdrawing and donating groups), we achieved fine-tuning of the Dy-Dy distances and the modulation to the Dy-Dy magnetic interactions, which ultimately resulting in enhanced single-molecule magnetic (SMM) properties. Dynamic magnetic measurement revealed that complexes 13 all exhibit characteristic single-molecule magnet behavior with effective energy barriers of 54.62 K, 105.46 K, and 129.96 K, respectively. Notably, complex 3 bridged by methyl-substituted DMOP exhibits magnetic hysteresis up to 4 K and a clear open hysteresis loop with a coercive field of 221 Oe is observed under zero applied DC field at 1.9 K, which is rarely observed in non-radical-bridged binuclear lanthanide SMMs.

Abstract Image

协同结构-电子策略增强DyIII单分子磁体的磁弛豫
以4-羟基-3,5-二甲氧基苯甲醛(DMOAP)、2,6-二甲氧基苯酚(DMOP)和2,6-二甲氧基-4-甲基苯酚(DMOMP)为桥接物,合成了[Dy2(NO3)4(DMOAP)2(SCN)2]·2(Et)3NH(1)、[Dy2(NO3)4(DMOP)2(SCN)2]·2(Et)3NH(2))和[Dy2(NO3)4(DMOMP)2(SCN)2]·2(Et)3NH(3))三种新型双核镝配合物。通过改变DMOP桥上的取代基(吸电子基和供电子基),我们实现了Dy-Dy距离的微调和Dy-Dy磁相互作用的调制,最终导致单分子磁性(SMM)性能的增强。动态磁性测量表明,配合物1-3均表现出典型的单分子磁性行为,有效能垒分别为54.62 K、105.46 K和129.96 K。值得注意的是,甲基取代DMOP桥接的配合物3表现出高达4 K的磁滞,并且在1.9 K的零直流场下观察到一个清晰的开放磁滞环,其顽固性场为221 Oe,这在非自由基桥接的双核镧系smm中很少观察到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Structure
Journal of Molecular Structure 化学-物理化学
CiteScore
7.10
自引率
15.80%
发文量
2384
审稿时长
45 days
期刊介绍: The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including: • Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.) • Chemical intermediates • Molecules in excited states • Biological molecules • Polymers. The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example: • Infrared spectroscopy (mid, far, near) • Raman spectroscopy and non-linear Raman methods (CARS, etc.) • Electronic absorption spectroscopy • Optical rotatory dispersion and circular dichroism • Fluorescence and phosphorescence techniques • Electron spectroscopies (PES, XPS), EXAFS, etc. • Microwave spectroscopy • Electron diffraction • NMR and ESR spectroscopies • Mössbauer spectroscopy • X-ray crystallography • Charge Density Analyses • Computational Studies (supplementing experimental methods) We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信