No More Free Lunch: Challenges to Mendelian Randomization Due to Sample Selection and Complex Methods.

Tianyuan Lu, Wenmin Zhang, Fergus W Hamilton, Guillaume Butler-Laporte, Nicholas J Timpson, George Davey Smith, J Brent Richards
{"title":"No More Free Lunch: Challenges to Mendelian Randomization Due to Sample Selection and Complex Methods.","authors":"Tianyuan Lu, Wenmin Zhang, Fergus W Hamilton, Guillaume Butler-Laporte, Nicholas J Timpson, George Davey Smith, J Brent Richards","doi":"10.1210/clinem/dgaf305","DOIUrl":null,"url":null,"abstract":"<p><p>Mendelian randomization (MR) is increasingly used in epidemiological studies to investigate causal relationships. MR depends on 3 fundamental instrumental variable assumptions: relevance, independence, and exclusion restriction. Studies often assume that MR mitigates bias from confounding due to the random allocation of genetic variants at conception. In this perspective, using causal directed acyclic graphs, we discuss several scenarios where biases in MR analyses may arise due to the nature of the data or methods being used. These include (1) collider bias due to the nonrandom selection of participants into study populations used for conducting genome-wide association studies (GWAS), (2) indirect genetic effects arising from population-based GWAS rather than within-family studies, and (3) collider bias due to gene-environment interaction effects on the exposure in nonlinear MR analyses. We provide practical considerations for examining and reducing these biases in MR analyses.</p>","PeriodicalId":520805,"journal":{"name":"The Journal of clinical endocrinology and metabolism","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of clinical endocrinology and metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1210/clinem/dgaf305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mendelian randomization (MR) is increasingly used in epidemiological studies to investigate causal relationships. MR depends on 3 fundamental instrumental variable assumptions: relevance, independence, and exclusion restriction. Studies often assume that MR mitigates bias from confounding due to the random allocation of genetic variants at conception. In this perspective, using causal directed acyclic graphs, we discuss several scenarios where biases in MR analyses may arise due to the nature of the data or methods being used. These include (1) collider bias due to the nonrandom selection of participants into study populations used for conducting genome-wide association studies (GWAS), (2) indirect genetic effects arising from population-based GWAS rather than within-family studies, and (3) collider bias due to gene-environment interaction effects on the exposure in nonlinear MR analyses. We provide practical considerations for examining and reducing these biases in MR analyses.

不再有免费的午餐:由于样本选择和复杂的方法对孟德尔随机化的挑战。
孟德尔随机化(MR)越来越多地用于流行病学研究,以调查因果关系。MR依赖于3个基本的工具变量假设:相关性、独立性和排除限制。研究通常假设MR减轻了由于遗传变异在受孕时随机分配而引起的混淆的偏差。从这个角度来看,使用因果有向无环图,我们讨论了由于所使用的数据或方法的性质而可能出现MR分析偏差的几种情况。这些因素包括:(1)碰撞偏倚,这是由于参与者被非随机地选择到进行全基因组关联研究(GWAS)的研究群体中,(2)基于群体的GWAS而不是家庭内部研究产生的间接遗传效应,以及(3)碰撞偏倚,这是由于非线性MR分析中基因-环境相互作用对暴露的影响。我们为MR分析中检查和减少这些偏差提供了实际考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信