Discrete Representation Learning for Multivariate Time Series.

Marzieh Ajirak, Immanuel Elbau, Nili Solomonov, Logan Grosenick
{"title":"Discrete Representation Learning for Multivariate Time Series.","authors":"Marzieh Ajirak, Immanuel Elbau, Nili Solomonov, Logan Grosenick","doi":"10.23919/eusipco63174.2024.10715138","DOIUrl":null,"url":null,"abstract":"<p><p>This paper focuses on discrete representation learning for multivariate time series with Gaussian processes. To overcome the challenges inherent in incorporating discrete latent variables into deep learning models, our approach uses a Gumbel-softmax reparameterization trick to address non-differentiability, enabling joint clustering and embedding through learnable discretization of the latent space. The proposed architecture thus enhances interpretability both by estimating a low-dimensional embedding for high dimensional time series and by simultaneously discovering discrete latent states. Empirical assessments on synthetic and real-world fMRI data validate the model's efficacy, showing improved classification results using our representation.</p>","PeriodicalId":87340,"journal":{"name":"Proceedings of the ... European Signal Processing Conference (EUSIPCO). EUSIPCO (Conference)","volume":"2024 ","pages":"1132-1136"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162130/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... European Signal Processing Conference (EUSIPCO). EUSIPCO (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco63174.2024.10715138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on discrete representation learning for multivariate time series with Gaussian processes. To overcome the challenges inherent in incorporating discrete latent variables into deep learning models, our approach uses a Gumbel-softmax reparameterization trick to address non-differentiability, enabling joint clustering and embedding through learnable discretization of the latent space. The proposed architecture thus enhances interpretability both by estimating a low-dimensional embedding for high dimensional time series and by simultaneously discovering discrete latent states. Empirical assessments on synthetic and real-world fMRI data validate the model's efficacy, showing improved classification results using our representation.

多元时间序列的离散表示学习。
本文主要研究具有高斯过程的多元时间序列的离散表示学习。为了克服将离散潜在变量纳入深度学习模型所固有的挑战,我们的方法使用Gumbel-softmax重新参数化技巧来解决不可微性,通过潜在空间的可学习离散化实现联合聚类和嵌入。因此,所提出的体系结构通过估计高维时间序列的低维嵌入和同时发现离散潜在状态来增强可解释性。对合成和现实世界fMRI数据的经验评估验证了模型的有效性,显示了使用我们的表征改进的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信