Applying machine learning to assist in the morphometric assessment of brain arteriolosclerosis through automation.

Q3 Medicine
Free neuropathology Pub Date : 2025-06-02 eCollection Date: 2025-01-01 DOI:10.17879/freeneuropathology-2025-6387
Jerry J Lou, Peter Chang, Kiana D Nava, Chanon Chantaduly, Hsin-Pei Wang, William H Yong, Viharkumar Patel, Ajinkya J Chaudhari, La Rissa Vasquez, Edwin Monuki, Elizabeth Head, Harry V Vinters, Shino Magaki, Danielle J Harvey, Chen-Nee Chuah, Charles S DeCarli, Christopher K Williams, Michael Keiser, Brittany N Dugger
{"title":"Applying machine learning to assist in the morphometric assessment of brain arteriolosclerosis through automation.","authors":"Jerry J Lou, Peter Chang, Kiana D Nava, Chanon Chantaduly, Hsin-Pei Wang, William H Yong, Viharkumar Patel, Ajinkya J Chaudhari, La Rissa Vasquez, Edwin Monuki, Elizabeth Head, Harry V Vinters, Shino Magaki, Danielle J Harvey, Chen-Nee Chuah, Charles S DeCarli, Christopher K Williams, Michael Keiser, Brittany N Dugger","doi":"10.17879/freeneuropathology-2025-6387","DOIUrl":null,"url":null,"abstract":"<p><p>Objective quantification of brain arteriolosclerosis remains an area of ongoing refinement in neuropathology, with current methods primarily utilizing semi-quantitative scales completed through manual histological examination. These approaches offer modest inter-rater reliability and do not provide precise quantitative metrics. To address this gap, we present a prototype end-to-end machine learning (ML)-based algorithm, Arteriolosclerosis Segmentation (ArtSeg), followed by Vascular Morphometry (VasMorph) - to assist persons in the morphometric analysis of arteriolosclerotic vessels on whole slide images (WSIs). We digitized hematoxylin and eosin-stained glass slides (13 participants, total 42 WSIs) of human brain frontal or occipital lobe cortical and/or periventricular white matter collected from three brain banks (University of California, Davis, Irvine, and Los Angeles Alzheimer's Disease Research Centers). ArtSeg comprises three ML models for blood vessel detection, arteriolosclerosis classification, and segmentation of arteriolosclerotic vessel walls and lumens. For blood vessel detection, ArtSeg achieved area under the receiver operating characteristic curve (AUC-ROC) values of 0.79 (internal hold-out testing) and 0.77 (external testing), Dice scores of 0.56 (internal hold-out) and 0.74 (external), and Hausdorff distances of 2.53 (internal hold-out) and 2.15 (external). Arteriolosclerosis classification demonstrated accuracies of 0.94 (mean, 3-fold cross-validation), 0.86 (internal hold-out), and 0.77 (external), alongside AUC-ROC values of 0.69 (mean, 3-fold cross-validation), 0.87 (internal hold-out), and 0.83 (external). For arteriolosclerotic vessel segmentation, ArtSeg yielded Dice scores of 0.68 (mean, 3-fold cross-validation), 0.73 (internal hold-out), and 0.71 (external); Hausdorff distances of 7.63 (mean, 3-fold cross-validation), 6.93 (internal hold-out), and 7.80 (external); and AUC-ROC values of 0.90 (mean, 3-fold cross-validation), 0.92 (internal hold-out), and 0.87 (external). VasMorph successfully derived sclerotic indices, vessel wall thicknesses, and vessel wall to lumen area ratios from ArtSeg-segmented vessels, producing results comparable to expert assessment. This integrated approach shows promise as an assistive tool to enhance current neuropathological evaluation of brain arteriolosclerosis, offering potential for improved inter-rater reliability and quantification.</p>","PeriodicalId":73056,"journal":{"name":"Free neuropathology","volume":"6 ","pages":"12"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12159543/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free neuropathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17879/freeneuropathology-2025-6387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective quantification of brain arteriolosclerosis remains an area of ongoing refinement in neuropathology, with current methods primarily utilizing semi-quantitative scales completed through manual histological examination. These approaches offer modest inter-rater reliability and do not provide precise quantitative metrics. To address this gap, we present a prototype end-to-end machine learning (ML)-based algorithm, Arteriolosclerosis Segmentation (ArtSeg), followed by Vascular Morphometry (VasMorph) - to assist persons in the morphometric analysis of arteriolosclerotic vessels on whole slide images (WSIs). We digitized hematoxylin and eosin-stained glass slides (13 participants, total 42 WSIs) of human brain frontal or occipital lobe cortical and/or periventricular white matter collected from three brain banks (University of California, Davis, Irvine, and Los Angeles Alzheimer's Disease Research Centers). ArtSeg comprises three ML models for blood vessel detection, arteriolosclerosis classification, and segmentation of arteriolosclerotic vessel walls and lumens. For blood vessel detection, ArtSeg achieved area under the receiver operating characteristic curve (AUC-ROC) values of 0.79 (internal hold-out testing) and 0.77 (external testing), Dice scores of 0.56 (internal hold-out) and 0.74 (external), and Hausdorff distances of 2.53 (internal hold-out) and 2.15 (external). Arteriolosclerosis classification demonstrated accuracies of 0.94 (mean, 3-fold cross-validation), 0.86 (internal hold-out), and 0.77 (external), alongside AUC-ROC values of 0.69 (mean, 3-fold cross-validation), 0.87 (internal hold-out), and 0.83 (external). For arteriolosclerotic vessel segmentation, ArtSeg yielded Dice scores of 0.68 (mean, 3-fold cross-validation), 0.73 (internal hold-out), and 0.71 (external); Hausdorff distances of 7.63 (mean, 3-fold cross-validation), 6.93 (internal hold-out), and 7.80 (external); and AUC-ROC values of 0.90 (mean, 3-fold cross-validation), 0.92 (internal hold-out), and 0.87 (external). VasMorph successfully derived sclerotic indices, vessel wall thicknesses, and vessel wall to lumen area ratios from ArtSeg-segmented vessels, producing results comparable to expert assessment. This integrated approach shows promise as an assistive tool to enhance current neuropathological evaluation of brain arteriolosclerosis, offering potential for improved inter-rater reliability and quantification.

自动化应用机器学习辅助脑小动脉硬化的形态计量学评估。
脑小动脉硬化的客观量化仍然是神经病理学中一个不断完善的领域,目前的方法主要是利用人工组织学检查完成的半定量量表。这些方法提供了适度的评级者之间的可靠性,并没有提供精确的定量指标。为了解决这一差距,我们提出了一种基于端到端机器学习(ML)的原型算法,即动脉硬化分割(ArtSeg),然后是血管形态测量(VasMorph),以帮助人们在整个幻灯片图像(wsi)上对动脉硬化血管进行形态测量分析。我们对从三个脑库(加州大学戴维斯分校、欧文分校和洛杉矶阿尔茨海默病研究中心)收集的人脑额叶或枕叶皮质和/或脑室周围白质的苏木精和伊红染色玻片(13名参与者,共42个wsi)进行了数字化处理。ArtSeg包括三种ML模型,分别用于血管检测、小动脉硬化分类、小动脉硬化血管壁和管腔分割。对于血管检测,ArtSeg的受试者工作特征曲线下面积(AUC-ROC)值分别为0.79(内夹持检测)和0.77(外夹持检测),Dice评分分别为0.56(内夹持检测)和0.74(外夹持检测),Hausdorff距离分别为2.53(内夹持检测)和2.15(外夹持检测)。动脉硬化分类的准确率为0.94(平均,3倍交叉验证),0.86(内部滞留)和0.77(外部滞留),AUC-ROC值为0.69(平均,3倍交叉验证),0.87(内部滞留)和0.83(外部滞留)。对于小动脉硬化血管分割,ArtSeg得出的Dice评分为0.68(平均,3倍交叉验证),0.73(内部保留)和0.71(外部);豪斯多夫距离为7.63(平均,3倍交叉验证),6.93(内部保留)和7.80(外部);AUC-ROC值为0.90(平均,3倍交叉验证),0.92(内部保留)和0.87(外部)。VasMorph成功地从artseg分割的血管中获得硬化指数、血管壁厚度和血管壁/管腔面积比,产生与专家评估相当的结果。这种综合方法有望作为一种辅助工具,增强当前脑小动脉硬化的神经病理学评估,为提高评分间的可靠性和量化提供潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信