Real-time automated billing for tobacco treatment: developing and validating a scalable machine learning approach.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES
JAMIA Open Pub Date : 2025-06-12 eCollection Date: 2025-06-01 DOI:10.1093/jamiaopen/ooaf039
Derek J Baughman, Layth Qassem, Lina Sulieman, Michael E Matheny, Daniel Fabbri, Hilary A Tindle, Aubrey Cole Goodman, Scott D Nelson, Adam Wright
{"title":"Real-time automated billing for tobacco treatment: developing and validating a scalable machine learning approach.","authors":"Derek J Baughman, Layth Qassem, Lina Sulieman, Michael E Matheny, Daniel Fabbri, Hilary A Tindle, Aubrey Cole Goodman, Scott D Nelson, Adam Wright","doi":"10.1093/jamiaopen/ooaf039","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To develop CigStopper, a real-time, automated medical billing prototype designed to identify eligible tobacco cessation care codes, thereby reducing administrative workload while improving billing accuracy.</p><p><strong>Materials and methods: </strong>ChatGPT prompt engineering generated a synthetic corpus of physician-style clinical notes categorized for CPT codes 99406/99407. Practicing clinicians annotated the dataset to train multiple machine learning (ML) models focused on accurately predicting billing code eligibility.</p><p><strong>Results: </strong>Decision tree and random forest models performed best. Mean performance across all models: PRC AUC = 0.857, F1 score = 0.835. Generalizability testing on deidentified notes confirmed that tree-based models performed best.</p><p><strong>Discussion: </strong>CigStopper shows promise for streamlining manual billing inefficiencies that hinder tobacco cessation care. ML methods lay the groundwork for clinical implementation based on good performance using synthetic data. Automating high-volume, low-value tasks simplify complexities in a multi-payer system and promote financial sustainability for healthcare practices.</p><p><strong>Conclusion: </strong>CigStopper validates foundational methods for automating the discernment of appropriate billing codes for eligible smoking cessation counseling care.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"8 3","pages":"ooaf039"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12161450/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooaf039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To develop CigStopper, a real-time, automated medical billing prototype designed to identify eligible tobacco cessation care codes, thereby reducing administrative workload while improving billing accuracy.

Materials and methods: ChatGPT prompt engineering generated a synthetic corpus of physician-style clinical notes categorized for CPT codes 99406/99407. Practicing clinicians annotated the dataset to train multiple machine learning (ML) models focused on accurately predicting billing code eligibility.

Results: Decision tree and random forest models performed best. Mean performance across all models: PRC AUC = 0.857, F1 score = 0.835. Generalizability testing on deidentified notes confirmed that tree-based models performed best.

Discussion: CigStopper shows promise for streamlining manual billing inefficiencies that hinder tobacco cessation care. ML methods lay the groundwork for clinical implementation based on good performance using synthetic data. Automating high-volume, low-value tasks simplify complexities in a multi-payer system and promote financial sustainability for healthcare practices.

Conclusion: CigStopper validates foundational methods for automating the discernment of appropriate billing codes for eligible smoking cessation counseling care.

烟草治疗的实时自动计费:开发和验证可扩展的机器学习方法。
目的:开发CigStopper,一种实时、自动化的医疗计费原型,旨在识别合格的戒烟护理代码,从而减少行政工作量,同时提高计费准确性。材料和方法:ChatGPT提示工程生成了一个医生风格的临床笔记合成语料库,分类为CPT代码99406/99407。执业临床医生对数据集进行注释,以训练多个机器学习(ML)模型,重点是准确预测计费代码的合格性。结果:决策树模型和随机森林模型效果最好。所有模型的平均性能:PRC AUC = 0.857, F1得分= 0.835。在未识别的笔记上进行的通用性测试证实,基于树的模型表现最好。讨论:CigStopper有望简化阻碍戒烟护理的低效率手动计费。基于合成数据的良好性能,ML方法为临床实施奠定了基础。自动化大容量、低价值的任务简化了多付款人系统的复杂性,并促进了医疗保健实践的财务可持续性。结论:CigStopper验证了自动识别合适的戒烟咨询护理账单代码的基本方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信