Rick Kamps, Herm Martens, Bart de Koning, Bert Smeets, Michel van Geel
{"title":"Identifying a Novel Causal FAM83H Variant for Autosomal Dominant Amelogenesis Imperfecta Using Exome-Sequencing.","authors":"Rick Kamps, Herm Martens, Bart de Koning, Bert Smeets, Michel van Geel","doi":"10.1002/mgg3.70108","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Amelogenesis imperfecta (AI) is a rare genetic disorder causing tooth enamel defects. AI has been classified into 14 different clinical subtypes with different modes of inheritance. In this study, we performed whole-exome sequencing to identify the causative gene defect in a large Dutch family with autosomal dominant hypocalcified AI (ADHCAI).</p><p><strong>Methods: </strong>Whole-exome sequencing (WES) was performed on genomic DNA of the proband with AI. We focused on eight candidate genes known to be involved in inherited autosomal dominant AI. Sanger sequencing was used to confirm the selected exome candidate variant. Additionally, genotype and phenotype analyses were performed in the selected affected and non-affected individuals and compared according to previously listed literature for this candidate gene of the proband.</p><p><strong>Results: </strong>The clinical phenotype of the affected individuals showed a generalized and extensive enamel defect of all teeth. In the exome dataset of the proband, a novel nonsense variant in FAM83H, c.1055C>A p.(Ser352*) was detected, which was verified by conventional Sanger sequencing. Co-segregation analysis confirmed that the variant was present in all affected individuals and not in unaffected individuals.</p><p><strong>Conclusion: </strong>A novel pathogenic, protein-truncating variant was detected in FAM83H, a gene with similar truncating variants known to be associated with ADHCAI.</p>","PeriodicalId":18852,"journal":{"name":"Molecular Genetics & Genomic Medicine","volume":"13 6","pages":"e70108"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162354/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics & Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mgg3.70108","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Amelogenesis imperfecta (AI) is a rare genetic disorder causing tooth enamel defects. AI has been classified into 14 different clinical subtypes with different modes of inheritance. In this study, we performed whole-exome sequencing to identify the causative gene defect in a large Dutch family with autosomal dominant hypocalcified AI (ADHCAI).
Methods: Whole-exome sequencing (WES) was performed on genomic DNA of the proband with AI. We focused on eight candidate genes known to be involved in inherited autosomal dominant AI. Sanger sequencing was used to confirm the selected exome candidate variant. Additionally, genotype and phenotype analyses were performed in the selected affected and non-affected individuals and compared according to previously listed literature for this candidate gene of the proband.
Results: The clinical phenotype of the affected individuals showed a generalized and extensive enamel defect of all teeth. In the exome dataset of the proband, a novel nonsense variant in FAM83H, c.1055C>A p.(Ser352*) was detected, which was verified by conventional Sanger sequencing. Co-segregation analysis confirmed that the variant was present in all affected individuals and not in unaffected individuals.
Conclusion: A novel pathogenic, protein-truncating variant was detected in FAM83H, a gene with similar truncating variants known to be associated with ADHCAI.
期刊介绍:
Molecular Genetics & Genomic Medicine is a peer-reviewed journal for rapid dissemination of quality research related to the dynamically developing areas of human, molecular and medical genetics. The journal publishes original research articles covering findings in phenotypic, molecular, biological, and genomic aspects of genomic variation, inherited disorders and birth defects. The broad publishing spectrum of Molecular Genetics & Genomic Medicine includes rare and common disorders from diagnosis to treatment. Examples of appropriate articles include reports of novel disease genes, functional studies of genetic variants, in-depth genotype-phenotype studies, genomic analysis of inherited disorders, molecular diagnostic methods, medical bioinformatics, ethical, legal, and social implications (ELSI), and approaches to clinical diagnosis. Molecular Genetics & Genomic Medicine provides a scientific home for next generation sequencing studies of rare and common disorders, which will make research in this fascinating area easily and rapidly accessible to the scientific community. This will serve as the basis for translating next generation sequencing studies into individualized diagnostics and therapeutics, for day-to-day medical care.
Molecular Genetics & Genomic Medicine publishes original research articles, reviews, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented.