Spatio-Temporal Progressive Attention Model for EEG Classification in Rapid Serial Visual Presentation Task.

IF 4.5 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Yang Li, Wei Liu, Tianzhi Feng, Fu Li, Chennan Wu, Boxun Fu, Zhifu Zhao, Xiaotian Wang, Guangming Shi
{"title":"Spatio-Temporal Progressive Attention Model for EEG Classification in Rapid Serial Visual Presentation Task.","authors":"Yang Li, Wei Liu, Tianzhi Feng, Fu Li, Chennan Wu, Boxun Fu, Zhifu Zhao, Xiaotian Wang, Guangming Shi","doi":"10.1109/TBME.2025.3579491","DOIUrl":null,"url":null,"abstract":"<p><p>As a type of multi-dimensional sequential data, the spatial and temporal dependencies of electroencephalogram (EEG) signals should be further investigated. Thus, in this paper, we propose a novel spatial-temporal progressive attention model (STPAM) to improve EEG classification in rapid serial visual presentation (RSVP) tasks. STPAM employs a progressive approach using three sequential spatial experts to learn brain region topology and mitigate interference from irrelevant areas. Each expert refines EEG electrode selection, guiding subsequent experts to focus on significant spatial information, thus enhancing signals from key regions. Subsequently, based on the above spatially-enhanced features, three temporal experts progressively capture temporal dependencies by focusing attention on crucial EEG time slices. Except for the above EEG classification method, in this paper, we build a novel Infrared RSVP Dataset (IRED) which is based on dim infrared images with small targets for the first time, and conduct extensive experiments on it. Experimental results demonstrate that STPAM outperforms all baselines, achieving 2.02% and 1.17% on the public dataset and IRED dataset, respectively.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3579491","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As a type of multi-dimensional sequential data, the spatial and temporal dependencies of electroencephalogram (EEG) signals should be further investigated. Thus, in this paper, we propose a novel spatial-temporal progressive attention model (STPAM) to improve EEG classification in rapid serial visual presentation (RSVP) tasks. STPAM employs a progressive approach using three sequential spatial experts to learn brain region topology and mitigate interference from irrelevant areas. Each expert refines EEG electrode selection, guiding subsequent experts to focus on significant spatial information, thus enhancing signals from key regions. Subsequently, based on the above spatially-enhanced features, three temporal experts progressively capture temporal dependencies by focusing attention on crucial EEG time slices. Except for the above EEG classification method, in this paper, we build a novel Infrared RSVP Dataset (IRED) which is based on dim infrared images with small targets for the first time, and conduct extensive experiments on it. Experimental results demonstrate that STPAM outperforms all baselines, achieving 2.02% and 1.17% on the public dataset and IRED dataset, respectively.

快速序列视觉呈现任务脑电分类的时空递进注意模型。
脑电图信号作为一种多维序列数据,其时空依赖性有待进一步研究。为此,我们提出了一种新的时空递进注意模型(STPAM)来改进快速序列视觉呈现(RSVP)任务的脑电分类。STPAM采用循序渐进的方法,使用三个连续的空间专家来学习大脑区域拓扑并减轻不相关区域的干扰。每位专家对EEG电极的选择进行细化,引导后续专家关注有意义的空间信息,从而增强关键区域的信号。随后,三位时间专家基于上述空间增强特征,通过将注意力集中在关键的EEG时间片上,逐步捕获时间依赖性。除上述脑电分类方法外,本文首次构建了基于小目标弱红外图像的红外RSVP数据集(IRED),并对其进行了大量实验。实验结果表明,STPAM优于所有基线,在公共数据集和IRED数据集上分别达到2.02%和1.17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信