Stefanos Roumeliotis, Rosaria A Cavallaro, Ioannis Kontogiorgos, Ioannis E Neofytou, Katarzyna Maresz, Jean-Francois Jeanne, Niccolò Miraglia, Andrea Fuso
{"title":"The epigenetic potential of vitamin K2 in brain health.","authors":"Stefanos Roumeliotis, Rosaria A Cavallaro, Ioannis Kontogiorgos, Ioannis E Neofytou, Katarzyna Maresz, Jean-Francois Jeanne, Niccolò Miraglia, Andrea Fuso","doi":"10.1080/17501911.2025.2518916","DOIUrl":null,"url":null,"abstract":"<p><p>Vitamin K2 refers to a subfamily of vitamin K isoforms known as Menaquinones and, therefore, indicated as MK-n, the \"n\" indicating the number of isoprene units present in the side chain. Like the other members of the Vitamin K family, K2 is an enzymatic cofactor for the γ-glutamyl carboxylase (GGCX). This enzyme's substrates, which carboxylate glutamic acid residues, are known as Vitamin K-dependent proteins (VKDPs). Besides being involved in bone homeostasis, vitamin K exerts its primary function in the coagulation process. More recently, a function of Vitamin K also in brain homeostasis has been claimed. In addition to these so-called \"canonical\" effects, recent research highlights the possibility that Vitamin K, particularly Vitamin K2 May 2001have or induce epigenetic effects through the modulation of DNA methylation, histone modifications, and microRNAs expression. This evidence seems particularly relevant in brain diseases, where epigenetics is gaining a central role as a modulator of multiple diseases-associated molecular metabolisms. The present review examines the recent literature (PubMed) to collect evidence for the role of Vitamin K2 in neurodegenerative diseases with the goal of fostering interest in its epigenetic potential.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"1-10"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17501911.2025.2518916","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Vitamin K2 refers to a subfamily of vitamin K isoforms known as Menaquinones and, therefore, indicated as MK-n, the "n" indicating the number of isoprene units present in the side chain. Like the other members of the Vitamin K family, K2 is an enzymatic cofactor for the γ-glutamyl carboxylase (GGCX). This enzyme's substrates, which carboxylate glutamic acid residues, are known as Vitamin K-dependent proteins (VKDPs). Besides being involved in bone homeostasis, vitamin K exerts its primary function in the coagulation process. More recently, a function of Vitamin K also in brain homeostasis has been claimed. In addition to these so-called "canonical" effects, recent research highlights the possibility that Vitamin K, particularly Vitamin K2 May 2001have or induce epigenetic effects through the modulation of DNA methylation, histone modifications, and microRNAs expression. This evidence seems particularly relevant in brain diseases, where epigenetics is gaining a central role as a modulator of multiple diseases-associated molecular metabolisms. The present review examines the recent literature (PubMed) to collect evidence for the role of Vitamin K2 in neurodegenerative diseases with the goal of fostering interest in its epigenetic potential.
期刊介绍:
Epigenomics provides the forum to address the rapidly progressing research developments in this ever-expanding field; to report on the major challenges ahead and critical advances that are propelling the science forward. The journal delivers this information in concise, at-a-glance article formats – invaluable to a time constrained community.
Substantial developments in our current knowledge and understanding of genomics and epigenetics are constantly being made, yet this field is still in its infancy. Epigenomics provides a critical overview of the latest and most significant advances as they unfold and explores their potential application in the clinical setting.