A strategy for the automatic diagnostic pipeline towards feature-based models: a primer with pleural invasion prediction from preoperative PET/CT images.

IF 3.1 3区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Xiangxing Kong, Annan Zhang, Xin Zhou, Meixin Zhao, Jiayue Liu, Xinliang Zhang, Weifang Zhang, Xiangxi Meng, Nan Li, Zhi Yang
{"title":"A strategy for the automatic diagnostic pipeline towards feature-based models: a primer with pleural invasion prediction from preoperative PET/CT images.","authors":"Xiangxing Kong, Annan Zhang, Xin Zhou, Meixin Zhao, Jiayue Liu, Xinliang Zhang, Weifang Zhang, Xiangxi Meng, Nan Li, Zhi Yang","doi":"10.1186/s13550-025-01264-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aims to explore the feasibility to automate the application process of nomograms in clinical medicine, demonstrated through the task of preoperative pleural invasion prediction in non-small cell lung cancer patients using PET/CT imaging.</p><p><strong>Results: </strong>The automatic pipeline involves multimodal segmentation, feature extraction, and model prediction. It is validated on a cohort of 1116 patients from two medical centers. The performance of the feature-based diagnostic model outperformed both the radiomics model and individual machine learning models. The segmentation models for CT and PET images achieved mean dice similarity coefficients of 0.85 and 0.89, respectively, and the segmented lung contours showed high consistency with the actual contours. The automatic diagnostic system achieved an accuracy of 0.87 in the internal test set and 0.82 in the external test set, demonstrating comparable overall diagnostic performance to the human-based diagnostic model. In comparative analysis, the automatic diagnostic system showed superior performance relative to other segmentation and diagnostic pipelines.</p><p><strong>Conclusions: </strong>The proposed automatic diagnostic system provides an interpretable, automated solution for predicting pleural invasion in non-small cell lung cancer.</p>","PeriodicalId":11611,"journal":{"name":"EJNMMI Research","volume":"15 1","pages":"70"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162436/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13550-025-01264-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: This study aims to explore the feasibility to automate the application process of nomograms in clinical medicine, demonstrated through the task of preoperative pleural invasion prediction in non-small cell lung cancer patients using PET/CT imaging.

Results: The automatic pipeline involves multimodal segmentation, feature extraction, and model prediction. It is validated on a cohort of 1116 patients from two medical centers. The performance of the feature-based diagnostic model outperformed both the radiomics model and individual machine learning models. The segmentation models for CT and PET images achieved mean dice similarity coefficients of 0.85 and 0.89, respectively, and the segmented lung contours showed high consistency with the actual contours. The automatic diagnostic system achieved an accuracy of 0.87 in the internal test set and 0.82 in the external test set, demonstrating comparable overall diagnostic performance to the human-based diagnostic model. In comparative analysis, the automatic diagnostic system showed superior performance relative to other segmentation and diagnostic pipelines.

Conclusions: The proposed automatic diagnostic system provides an interpretable, automated solution for predicting pleural invasion in non-small cell lung cancer.

基于特征模型的自动诊断管道策略:从术前PET/CT图像预测胸膜浸润的引物。
背景:本研究旨在通过PET/CT对非小细胞肺癌患者术前胸膜浸润预测的任务,探讨在临床医学中实现断层图应用流程自动化的可行性。结果:自动流水线包括多模态分割、特征提取和模型预测。它在来自两个医疗中心的1116名患者的队列中得到验证。基于特征的诊断模型的性能优于放射组学模型和单个机器学习模型。CT和PET图像分割模型的平均骰子相似系数分别为0.85和0.89,分割后的肺轮廓与实际轮廓的一致性较高。自动诊断系统在内部测试集中的准确率为0.87,在外部测试集中的准确率为0.82,显示出与基于人的诊断模型相当的整体诊断性能。在对比分析中,自动诊断系统相对于其他分割和诊断管道表现出优越的性能。结论:提出的自动诊断系统为预测非小细胞肺癌胸膜浸润提供了一种可解释的、自动化的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EJNMMI Research
EJNMMI Research RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING&nb-
CiteScore
5.90
自引率
3.10%
发文量
72
审稿时长
13 weeks
期刊介绍: EJNMMI Research publishes new basic, translational and clinical research in the field of nuclear medicine and molecular imaging. Regular features include original research articles, rapid communication of preliminary data on innovative research, interesting case reports, editorials, and letters to the editor. Educational articles on basic sciences, fundamental aspects and controversy related to pre-clinical and clinical research or ethical aspects of research are also welcome. Timely reviews provide updates on current applications, issues in imaging research and translational aspects of nuclear medicine and molecular imaging technologies. The main emphasis is placed on the development of targeted imaging with radiopharmaceuticals within the broader context of molecular probes to enhance understanding and characterisation of the complex biological processes underlying disease and to develop, test and guide new treatment modalities, including radionuclide therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信