Novel Perspective of Regulating P53/Bcl2/Caspase-3 via In vitro Targeted AFP Gene Knocks Out in HepG2 Cells Using CRISPR/Cas9 Editing Tool.

IF 3.8 4区 医学 Q2 GENETICS & HEREDITY
Fatma Khorshed, Amina M Medhat, Germine M Hamdy, Ehab El-Dabaa, Hanaa Hammad, Heba A H Abd Elhameed, Mohamed Saber
{"title":"Novel Perspective of Regulating P53/Bcl2/Caspase-3 via In vitro Targeted AFP Gene Knocks Out in HepG2 Cells Using CRISPR/Cas9 Editing Tool.","authors":"Fatma Khorshed, Amina M Medhat, Germine M Hamdy, Ehab El-Dabaa, Hanaa Hammad, Heba A H Abd Elhameed, Mohamed Saber","doi":"10.2174/0115665232366303250529164610","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Hepatocellular carcinoma (HCC) is a major health burden worldwide, with a persistent need for molecular target drugs. Alpha-fetoprotein (AFP) is a major concern during HCC, as it has an incompletely solved action. CRISPR/Cas9 is a gene editing tool that aids in cancer treatment research; thus, this study evaluated the effect of in vitro knockout of AFP on HCC using CRISPR/Cas9 technique.</p><p><strong>Methods: </strong>Two sgRNAs targeting specific sites in AFP exon 2 were separately cloned to the mammalian expression vector pSpCas9 (BB)-2a-GFP (PX458). HepG2 cells were transfected with CRISPR constructs I and II, and a pool of the two constructs (M) for 6 -, 24- and 39 hours using liopfectamine3000. AFP editing was evaluated regarding genomic DNA sequence, RNA, and protein expression levels. In addition, the effect of AFP knocking out on HepG2 viability, and apoptotic genes mRNA and protein expression levels were evaluated using crystal violet assay, real-time PCR, and western blot analysis respectively.</p><p><strong>Results: </strong>The results revealed efficient delivery of the AFP/CRISPR constructs to HepG2 cells. Insertion and deletion mutations introduced to the AFP genomic sequence were analyzed using TIDE software analysis and the Expasy translation tool. The viability of the HepG2 cells was reduced 39 hours post-transfection with significant modulation in the expression of the apoptotic markers P53, BAX, Bcl2, and caspase-3.</p><p><strong>Conclusion: </strong>This study succeeded in developing AFP/CRISPR constructs that could disrupt the AFP genomic sequence, reduce its expression, and restore the activity of cell-specific apoptotic factors, demonstrating the potential inhibitory effect of AFP downregulation on HCC progression.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665232366303250529164610","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Hepatocellular carcinoma (HCC) is a major health burden worldwide, with a persistent need for molecular target drugs. Alpha-fetoprotein (AFP) is a major concern during HCC, as it has an incompletely solved action. CRISPR/Cas9 is a gene editing tool that aids in cancer treatment research; thus, this study evaluated the effect of in vitro knockout of AFP on HCC using CRISPR/Cas9 technique.

Methods: Two sgRNAs targeting specific sites in AFP exon 2 were separately cloned to the mammalian expression vector pSpCas9 (BB)-2a-GFP (PX458). HepG2 cells were transfected with CRISPR constructs I and II, and a pool of the two constructs (M) for 6 -, 24- and 39 hours using liopfectamine3000. AFP editing was evaluated regarding genomic DNA sequence, RNA, and protein expression levels. In addition, the effect of AFP knocking out on HepG2 viability, and apoptotic genes mRNA and protein expression levels were evaluated using crystal violet assay, real-time PCR, and western blot analysis respectively.

Results: The results revealed efficient delivery of the AFP/CRISPR constructs to HepG2 cells. Insertion and deletion mutations introduced to the AFP genomic sequence were analyzed using TIDE software analysis and the Expasy translation tool. The viability of the HepG2 cells was reduced 39 hours post-transfection with significant modulation in the expression of the apoptotic markers P53, BAX, Bcl2, and caspase-3.

Conclusion: This study succeeded in developing AFP/CRISPR constructs that could disrupt the AFP genomic sequence, reduce its expression, and restore the activity of cell-specific apoptotic factors, demonstrating the potential inhibitory effect of AFP downregulation on HCC progression.

利用CRISPR/Cas9编辑工具通过体外靶向敲除HepG2细胞中的AFP基因调控P53/Bcl2/Caspase-3的新视角
肝细胞癌(HCC)是世界范围内的主要健康负担,对分子靶向药物的需求持续存在。甲胎蛋白(AFP)是HCC的主要关注点,因为它的作用尚未完全解决。CRISPR/Cas9是一种基因编辑工具,有助于癌症治疗研究;因此,本研究利用CRISPR/Cas9技术评估体外敲除AFP对HCC的影响。方法:将两个靶向AFP外显子2特异位点的sgrna分别克隆到哺乳动物表达载体pSpCas9 (BB)-2a-GFP (PX458)上。用CRISPR构建体I和II转染HepG2细胞,并使用liopfectamine3000将这两种构建体(M)分别转染6、24和39小时。根据基因组DNA序列、RNA和蛋白质表达水平评估AFP编辑。采用结晶紫法、实时荧光定量PCR和western blot分析AFP敲除对HepG2细胞活力和凋亡基因mRNA和蛋白表达水平的影响。结果:结果显示AFP/CRISPR构建体有效地传递到HepG2细胞。引入AFP基因组序列的插入和缺失突变采用TIDE软件分析和Expasy翻译工具分析。转染39小时后,HepG2细胞的活力降低,凋亡标志物P53、BAX、Bcl2和caspase-3的表达显著调节。结论:本研究成功构建了AFP/CRISPR构建体,可以破坏AFP基因组序列,降低其表达,恢复细胞特异性凋亡因子的活性,表明AFP下调对HCC进展具有潜在的抑制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current gene therapy
Current gene therapy 医学-遗传学
CiteScore
6.70
自引率
2.80%
发文量
46
期刊介绍: Current Gene Therapy is a bi-monthly peer-reviewed journal aimed at academic and industrial scientists with an interest in major topics concerning basic research and clinical applications of gene and cell therapy of diseases. Cell therapy manuscripts can also include application in diseases when cells have been genetically modified. Current Gene Therapy publishes full-length/mini reviews and original research on the latest developments in gene transfer and gene expression analysis, vector development, cellular genetic engineering, animal models and human clinical applications of gene and cell therapy for the treatment of diseases. Current Gene Therapy publishes reviews and original research containing experimental data on gene and cell therapy. The journal also includes manuscripts on technological advances, ethical and regulatory considerations of gene and cell therapy. Reviews should provide the reader with a comprehensive assessment of any area of experimental biology applied to molecular medicine that is not only of significance within a particular field of gene therapy and cell therapy but also of interest to investigators in other fields. Authors are encouraged to provide their own assessment and vision for future advances. Reviews are also welcome on late breaking discoveries on which substantial literature has not yet been amassed. Such reviews provide a forum for sharply focused topics of recent experimental investigations in gene therapy primarily to make these results accessible to both clinical and basic researchers. Manuscripts containing experimental data should be original data, not previously published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信